Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2021 Photo Supplied
Besides being the top medical student at UFS in 2021, Dr Mario Vieira is passionate about food, music and sport, and plays the piano and guitar for leisure.

Dr Mario Vieira, one of the University of the Free State’s (UFS) newest graduates in the MBChB programme, says he is fortunate and blessed to graduate from the Faculty of Health Sciences as the top achiever in the class of 2021. Dr Vieira will graduate at the year-end ceremonies. 

Says Dr Vieira: “Privileged is the first word that comes to mind. Yet, there are so many other emotions and feelings involved. One is relieved that the hard work is over for now, but in the same breath, quite sad that this chapter of one’s life has come to an end. Excitement also comes through, knowing that a new challenge lies ahead.” 

Dr Vieira says being the top achiever is undeniably an unbelievable achievement, but there were many other factors and people who made it possible. His family, especially his parents, were his greatest motivation. Their unconditional love and support have made his success possible. 

Multiple factors led to medicine 

According to Dr Vieira, who wanted to be a pilot when he was growing up, there were multiple factors that led to him eventually study medicine. He says: “My first experience with medicine was at a young age when I lost a good friend of mine to cancer. I believe the seed that was planted began to grow when my brother started studying medicine. 
“In high school I made the decision once I realised I was passionate about people and would love to make a difference in the life of others. I think it was the idea that if one could pass this degree, one would be equipped and capable to change lives on a daily basis. My friends in medicine and the support system in Bloemfontein were also incredibly valuable. When times were tough, we would carry each other through,” says Dr Vieira on graduating in one of the university’s toughest fields.

He is starting his internship on 1 January 2022 at Addington Hospital in Durban. 

Besides medicine, this Bothaville, Free State native is also passionate about food, music and sport. He loves cooking and hopes to retire one day with a small restaurant by the sea – cooking food and putting smiles on people’s faces. He also loves playing piano and the guitar.

His message to other students who might be considering studying medicine is: “Be courageous. You are capable of more than you think. Believe in yourself. Hard work, determination and time management can get you where you want to be.” 

Your courage 

Prof Lynette van der Merwe, who took up her new position as Academic Head in the Division Health Sciences Education, Faculty of Health Sciences on 1 December 2021, congratulated the new cohort of UFS doctors and reminded them of the three Cs in the MBChB programme in 2021 – courage, conviction and compassion.

 “I saw your courage, the way you squared your shoulders and looked personal, academic and financial problems in the eye, and endured. You were brave and strong when it mattered most. and stayed true to yourself despite overwhelming odds. You made good choices although they were hard, you found a way to put one foot in front of the other when you were too tired to even think.”

“In the words of the poet Amanda Gorman, “There is always light, if only we’re brave enough to see it. If only we’re brave enough to be it. May you always carry your light into a dark world.” 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept