Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Nonsindiso Qwabe
Dr Bernard
Dr Eleanor Bernard heads the Centre for Teaching and Learning on the Qwaqwa Campus.

“I realised that our students are not regularly exposed to and immersed in an English first language environment. So, for two years, I created control groups and tested how to implement a film club to support their language learning as well as engage them. In the end, I created a framework that university language teachers can use, with very specific guidelines as to how to make it successful.”

For her PhD study in Higher Education Studies, Dr Eleanor Bernard created a play on traditional learning by implementing a film club as a way of enhancing the basic interpersonal communicative and English literacy skills of non-native speakers on the Qwaqwa Campus. Dr Bernard is the Assistant Director of the Centre for Teaching and Learning on the Qwaqwa Campus. She will be graduating with her PhD in Higher Education Studies during the December 2021 graduations. The title of her study is: Implementing a film club to enhance English second-language students’ basic interpersonal communicative and basic English literacy skills.

Building on her passion for language learning and acquisition, Dr Bernard wanted her study to be a fun and interesting way of enhancing the already existing General English language module by creating a space for exposure and social interaction. She did this by forming student groups that would regularly watch films and opened spaces for engagement as a way of focusing on the language development of the students.

“The highlight for me was sitting in a university lecture venue, while watching Tsotsi or Pitch Perfect with students, and seeing them interacting, laughing, and enjoying a usually very serious space. Also, the wonderful discussions they shared on Blackboard around elements such as lobola, or stereotypes. Lastly, seeing how by the end of the year, they would walk into my office and interact with me more confidently in English,” she said.

Language studies has been a part of her academic journey from her Honours qualification. She has an MA degree in Language Studies from the UFS. She said working on the Qwaqwa Campus with language and literacy modules, she loved the process of watching students blossom as they gained more confidence in using the English language. “I especially love receiving a student at the beginning of the year, who you can see struggling and almost battling through the content and the skills. And then to see the change by the end of the year, and how their confidence increased.”

‘No learning can take place without engaging students’
She said she hoped faculties would also see the value of focusing on the language development of students as a baseline for academic literacy skills development.

“No learning can take place without engaging students, and there are so many guidelines and practical ways to ensure this engagement, including in language learning. Student success is not just about performance or final marks, but also about students completing a year where they have interacted with others and learned to care for them, where they have been changed to want to impact societies and communities, and where they have acquired skills that they will use when they enter the world of work.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept