Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 December 2021 | Story Xolisa Mnukwa | Photo Supplied
Former UFS 2020/2021 Student Representative Council (SRC) member, Michael Mnguni describes the journey he travelled towards obtaining his BA in Governance and Political Transformation in 2021.

“I have travelled a long journey, from receiving my acceptance letter back in February 2017 after applying late, to obtaining a BA in Governance and Political Transformation in 2021. 

“I am the child of a single mother who worked as a domestic worker and resigned after I obtained my qualification. Her employer provided us with R10 000 to travel to Bloemfontein in 2017 – a day before registration was supposed to close – to pay for registration, which was about R6 000 at that time.” 

This is how UFS and former Student Representative Council (SRC) member, Michael Mgnuni, describes his journey from destitute student to SRC member and eventually UFS graduate.  

Mguni, who served on the 2020/2021 Bloemfontein Campus SRC responsible for the portfolio: Associations Student Council, said the hardships he faced instilled a desire for continuous improvement. 

“I did not have any form of funding, and back home no one thought I would make it to university because I did not get admitted to other institutions. I am a first-generation student and the firstborn in my family. The past five years have not been easy; especially when you are living far from home, you have to be independent and aware of what is happening in your surroundings.”

On 10 December 2021, Mgnuni became one of the hundreds of graduates who received their qualifications during the UFS virtual graduation ceremonies, obtaining a Bachelor of Arts in Governance and Political Transformation. 

“To obtain this qualification, I would go many days without food and study on an empty stomach. I was dealing with my own mental-health issues while attending to the well-being of others around me, because they became my brothers and sisters.” 

“My graduation journey was not easy; for the first four months at varsity, I travelled from Phahameng to school – living in my aunt’s back room. I had no funding, but my mother would send me money from the little she had, to ensure that I didn’t go to bed on an empty stomach. Through it all, I have conquered. My experiences inspired me to become a student activist, because I didn’t want prospective and returning UFS students to experience the same struggles I went through.” 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept