Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2021 | Story Leonie Bolleurs | Photo Supplied
Ofhani Mavhungu was recently awarded the Professor Rob Gous Scholarship by the Animal Feed Manufacturers Association (AFMA) of South Africa.

From a very early age, Ofhani Mavhungu knew he wanted to be involved in agriculture one day. Fast forward a few decades and you find Ofhani enrolled for the MScAgric Animal Science degree at the University of the Free State (UFS).

As a goal-orientated person who is open to new ventures, he reckons this degree will broaden his knowledge and understanding of the industry. “I believe Animal Science is an interdisciplinary field of study that enables students like me to pursue various career opportunities, ranging from primary animal production to secondary product processing, retail, and quality assurance. This motivates me to be part of the team that will ensure food security for the future generation,” says Ofhani.

Opening doors to a career in Animal Science

The Professor Rob Gous Scholarship for 2020/2021 that was jointly awarded to him and Victor Makofane of the University of Limpopo by the Animal Feed Manufacturers Association (AFMA) of South Africa, is for Ofhani a step closer to realising his dreams. 

“Diligence and hard work have always been the driving force throughout my studies, and I am delighted that my hard work was rewarded. This award further reflects on the Department of Animal Science’s dedication and commitment to build and mentor strong candidates who are recognised by the industry,” he says.

With increasing animal feed costs, the search for more cost-effective feed utilisation techniques – without compromising the nutritive value or feed quality – becomes critically important for intensive broiler producers. 

Ofhani’s study, which aims to evaluate the effect of increasing levels of a nutritional fat emulsifier with a high HLB on the (i) diet digestibility and (ii) production performance of broilers, will provide some insight into the possible energy-saving effect of dietary emulsifiers with a high HBL in broiler diets with moderate lipid inclusion levels. 

“A digestibility study will give more information on the emulsifier effect at metabolic level, and a production study will provide information on growth characteristics and carcass composition.”

An opportunity to compete with other candidates in the industry

“Few studies have been conducted on lipid emulsifiers under South African conditions, which necessitates the need for further research in this field,” he says. 

Ofhani, whose motto in life is to stay humble and accept positive criticism – as it is meant to enlighten you – wants to pursue a career in the animal feed industry. “My qualification will give me an opportunity to compete with other candidates of our generation in the industry, as well as on a research/academic level. By completing my MScAgric, I will broaden my own skill set so that I can continue with industry-related research in the future and provide mentorship to prospective animal scientists,” he adds. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept