Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2021 | Story Leonie Bolleurs | Photo Supplied
Ofhani Mavhungu was recently awarded the Professor Rob Gous Scholarship by the Animal Feed Manufacturers Association (AFMA) of South Africa.

From a very early age, Ofhani Mavhungu knew he wanted to be involved in agriculture one day. Fast forward a few decades and you find Ofhani enrolled for the MScAgric Animal Science degree at the University of the Free State (UFS).

As a goal-orientated person who is open to new ventures, he reckons this degree will broaden his knowledge and understanding of the industry. “I believe Animal Science is an interdisciplinary field of study that enables students like me to pursue various career opportunities, ranging from primary animal production to secondary product processing, retail, and quality assurance. This motivates me to be part of the team that will ensure food security for the future generation,” says Ofhani.

Opening doors to a career in Animal Science

The Professor Rob Gous Scholarship for 2020/2021 that was jointly awarded to him and Victor Makofane of the University of Limpopo by the Animal Feed Manufacturers Association (AFMA) of South Africa, is for Ofhani a step closer to realising his dreams. 

“Diligence and hard work have always been the driving force throughout my studies, and I am delighted that my hard work was rewarded. This award further reflects on the Department of Animal Science’s dedication and commitment to build and mentor strong candidates who are recognised by the industry,” he says.

With increasing animal feed costs, the search for more cost-effective feed utilisation techniques – without compromising the nutritive value or feed quality – becomes critically important for intensive broiler producers. 

Ofhani’s study, which aims to evaluate the effect of increasing levels of a nutritional fat emulsifier with a high HLB on the (i) diet digestibility and (ii) production performance of broilers, will provide some insight into the possible energy-saving effect of dietary emulsifiers with a high HBL in broiler diets with moderate lipid inclusion levels. 

“A digestibility study will give more information on the emulsifier effect at metabolic level, and a production study will provide information on growth characteristics and carcass composition.”

An opportunity to compete with other candidates in the industry

“Few studies have been conducted on lipid emulsifiers under South African conditions, which necessitates the need for further research in this field,” he says. 

Ofhani, whose motto in life is to stay humble and accept positive criticism – as it is meant to enlighten you – wants to pursue a career in the animal feed industry. “My qualification will give me an opportunity to compete with other candidates of our generation in the industry, as well as on a research/academic level. By completing my MScAgric, I will broaden my own skill set so that I can continue with industry-related research in the future and provide mentorship to prospective animal scientists,” he adds. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept