Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 December 2021 | Story André Damons | Photo Supplied
Prof Stephen Brown, Principal Specialist in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS), and his team are taking life-saving medical care to young patients in the rural parts of the Free State.

Paediatric heart specialists hope that an outreach initiative started back in 2016, allowing them to travel to rural areas in the Free State to diagnose heart defects in babies early, would grow and expand to other rural areas and provinces. 

Every year, more than 40 babies in the rural areas of South Africa may die as a result of an undiagnosed heart lesion, because everyone assumes that they have respiratory problems when they actually have critical congenital heart disease – up to 85% of which is curable, says Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology  in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS).

Prof Brown, who is also a paediatric cardiologist at the Universitas Academic Hospital, says a life-saving collaboration initiative between the UFS, the Mother and Child Academic Hospital (MACAH) Foundation, and the Discovery Fund started five years ago to help curb the death of young patients due to congenital heart disease, and to make services more accessible to rural communities.

Hundreds of patients seen annually  

“We initiated an outreach programme due to the fact that some patients found it difficult to get transport to our central hospital. Since the Free State is considered rural, there are long distances to travel. Our concept was that we should take the service to grass-roots level to make it more convenient for the parents and caretakers.

“We partnered with MACAH, and since early detection of congenital heart disease makes a big difference, it fits in nicely with MACAH’s first 1 000 days drive. Due to the hard work of Tertia de Bruyn, we were given the opportunity to come into contact with Discovery. Dr Daniel Buys (UFS Department of Paediatrics and Child Health) and Rudolph Pretorius (echocardiography technician) did a lot of the initial paperwork and motivation,” says Prof Brown.  

According to him, a mobile echocardiography apparatus was donated by the Discovery Foundation via MACAH, which is crucial for doing this outreach work. The machine looks like a laptop and can be transported in a carry case.  

“We see between 170 and 250 patients on an annual basis. The service is obviously confined to secondary hospitals, and we started doing the Mofumahadi Manapo Mopeli Hospital in Qwaqwa and the Bongani Regional Hospital in Welkom. It has since expanded to the Dihlabeng Regional Hospital (Bethlehem) and the Pelonomi Secondary Hospital in Bloemfontein. Since initiation in 2020, Pelonomi has seen on average 40 children per month receiving a heart sonar. COVID-19 has had a major impact on our work,” says Prof Brown. 

First 1 000 days in any child’s life determine their trajectory for life

Prof André Venter, Chairman of the MACAH Foundation, says one of the main commitments of the MACAH Foundation in central South Africa is their passionate belief that the first 1 000 days in any child’s life determine their trajectory for life. Says Prof Venter: “We should do everything in our power to ensure that this 1 000-day journey is as optimal for each child, including conception, pregnancy, birth, and health during the first two years of life.”

“As Chairman of the MACAH Foundation, I am sincerely grateful to pioneers such as Prof Brown and his team in Paediatric Cardiology for their excellent outreach initiative, but also to the Discovery Fund who shared our vision and that of Prof Brown’s team and was willing to make this very generous donation. I am so proud of and so grateful to all of you,” says Prof Venter.

According to him, this has not only helped to make infant cardiac screening in the rural areas a reality, but also to make it a world-class service.   

The importance of the partnership for rural areas  

Prof Brown says in his experience, this initiative is greatly appreciated, as he and Dr Buys do the clinics and heart sonars personally. “The families find this fantastic, since they can have direct interaction with their cardiologist, which allows for better communication and adds a personal touch. When they come to Bloemfontein for further assessment – their faces light up when seeing a familiar face.”  

“It also helps with treatment and management at their local institution. I also find that the doctors in the hospitals appreciate it tremendously – they find it easier to phone and ask for advice. It brings the ‘fancy tertiary physicians’ to a human level with whom they can interact. It also alleviates a lot of stress for the physicians, and they can show/ask advice re difficult cases,” says Prof Brown.  

By doing outreach, Prof Brown concludes, they have learned so much about the communities and the importance of being accessible, as patients appreciate having direct interaction with the professor. The doctors and staff have also been enthusiastic and supported them tremendously at all the hospitals. The students from Cuba have joined Prof Brown and his team when visiting their hospitals, and they can spend some dedicated clinical teaching time together.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept