Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 December 2021 | Story André Damons | Photo Supplied
Prof Stephen Brown, Principal Specialist in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS), and his team are taking life-saving medical care to young patients in the rural parts of the Free State.

Paediatric heart specialists hope that an outreach initiative started back in 2016, allowing them to travel to rural areas in the Free State to diagnose heart defects in babies early, would grow and expand to other rural areas and provinces. 

Every year, more than 40 babies in the rural areas of South Africa may die as a result of an undiagnosed heart lesion, because everyone assumes that they have respiratory problems when they actually have critical congenital heart disease – up to 85% of which is curable, says Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology  in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS).

Prof Brown, who is also a paediatric cardiologist at the Universitas Academic Hospital, says a life-saving collaboration initiative between the UFS, the Mother and Child Academic Hospital (MACAH) Foundation, and the Discovery Fund started five years ago to help curb the death of young patients due to congenital heart disease, and to make services more accessible to rural communities.

Hundreds of patients seen annually  

“We initiated an outreach programme due to the fact that some patients found it difficult to get transport to our central hospital. Since the Free State is considered rural, there are long distances to travel. Our concept was that we should take the service to grass-roots level to make it more convenient for the parents and caretakers.

“We partnered with MACAH, and since early detection of congenital heart disease makes a big difference, it fits in nicely with MACAH’s first 1 000 days drive. Due to the hard work of Tertia de Bruyn, we were given the opportunity to come into contact with Discovery. Dr Daniel Buys (UFS Department of Paediatrics and Child Health) and Rudolph Pretorius (echocardiography technician) did a lot of the initial paperwork and motivation,” says Prof Brown.  

According to him, a mobile echocardiography apparatus was donated by the Discovery Foundation via MACAH, which is crucial for doing this outreach work. The machine looks like a laptop and can be transported in a carry case.  

“We see between 170 and 250 patients on an annual basis. The service is obviously confined to secondary hospitals, and we started doing the Mofumahadi Manapo Mopeli Hospital in Qwaqwa and the Bongani Regional Hospital in Welkom. It has since expanded to the Dihlabeng Regional Hospital (Bethlehem) and the Pelonomi Secondary Hospital in Bloemfontein. Since initiation in 2020, Pelonomi has seen on average 40 children per month receiving a heart sonar. COVID-19 has had a major impact on our work,” says Prof Brown. 

First 1 000 days in any child’s life determine their trajectory for life

Prof André Venter, Chairman of the MACAH Foundation, says one of the main commitments of the MACAH Foundation in central South Africa is their passionate belief that the first 1 000 days in any child’s life determine their trajectory for life. Says Prof Venter: “We should do everything in our power to ensure that this 1 000-day journey is as optimal for each child, including conception, pregnancy, birth, and health during the first two years of life.”

“As Chairman of the MACAH Foundation, I am sincerely grateful to pioneers such as Prof Brown and his team in Paediatric Cardiology for their excellent outreach initiative, but also to the Discovery Fund who shared our vision and that of Prof Brown’s team and was willing to make this very generous donation. I am so proud of and so grateful to all of you,” says Prof Venter.

According to him, this has not only helped to make infant cardiac screening in the rural areas a reality, but also to make it a world-class service.   

The importance of the partnership for rural areas  

Prof Brown says in his experience, this initiative is greatly appreciated, as he and Dr Buys do the clinics and heart sonars personally. “The families find this fantastic, since they can have direct interaction with their cardiologist, which allows for better communication and adds a personal touch. When they come to Bloemfontein for further assessment – their faces light up when seeing a familiar face.”  

“It also helps with treatment and management at their local institution. I also find that the doctors in the hospitals appreciate it tremendously – they find it easier to phone and ask for advice. It brings the ‘fancy tertiary physicians’ to a human level with whom they can interact. It also alleviates a lot of stress for the physicians, and they can show/ask advice re difficult cases,” says Prof Brown.  

By doing outreach, Prof Brown concludes, they have learned so much about the communities and the importance of being accessible, as patients appreciate having direct interaction with the professor. The doctors and staff have also been enthusiastic and supported them tremendously at all the hospitals. The students from Cuba have joined Prof Brown and his team when visiting their hospitals, and they can spend some dedicated clinical teaching time together.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept