Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2021 | Story Nonsindiso Qwabe
Christa Faber
Innovative Methods in Assessment Practices award winner for the Qwaqwa Campus, Christa Faber.

By working with students and being part of their development into successful young adults, Mathematics and Applied Mathematics Lecturer on the Qwaqwa Campus, Christa Faber, soon realised that she would like to proceed with her own studies, and she set her sights on just that. Obtaining her honours degree in Mathematical Statistics at age 40 inspired Faber to continue pursuing an education. She will be receiving her Master of Higher Education Studies degree during the December graduations.

Teaching has always been her passion, Faber shared fondly. She commenced her teaching career as a Mathematics teacher in a small town, Molteno, in the Eastern Cape. After four years of teaching, she worked as a Mathematics supply teacher in the United Kingdom for two years. Upon her return, she continued her teaching career in Harrismith, where she was appointed as a Science teacher at Harrismith High School, before receiving an offer to assist the UFS Qwaqwa Campus as a Statistics facilitator in 2003. She never looked back.

As a researcher, Faber has spent the past eight years using technology as an educational tool to determine whether it can be used to improve students’ performance and understanding of basic statistics. “I believe students learn best when they expect to be successful and see the value of the course for their personal development,” she said.

Faber conducted an experiment on how an online assessment tool (OAT) could be incorporated into the Statistics module to enhance student engagement, and consequently, the performance of students in a rural setting. The transition from face-to-face teaching to online learning has been a topic across all institutions of higher learning, with students’ response to learning on blended platforms being of great importance.

The learning experiment, conducted pre-COVID, showed the benefits that online assessment tools could have on the performance and engagement of students at a rural university. Faber said she considers it important to know how students engaged in key online and general learning practices as a way of managing and developing rural university education. For the experiment, a pragmatic parallel mixed methods design was used to divide students into two groups to compare the performances of those with online assessment tool interventions and those without.

The intervention recently won Faber the Innovative Methods in Assessment Practices award for the Qwaqwa Campus at this year’s Centre for Teaching and Learning awards. The purpose of the category was to showcase how assessment strategies, tools, and assessment activities are used to assess students in new, original, or inventive ways. She said she was grateful to receive recognition for a research project inspired by her passion for teaching and learning, combined with the use of online assessment technology, to enhance students’ learning experience in the field of statistics. “My ongoing research supports the promotion of student engagement in statistics education, as well as in the general educational field.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept