Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2021 | Story André Damons | Photo Charl Devenish
Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS).

Even though not much is yet known about the new COVID-19 variant, Omicron, the presence of a high number of mutations – more than 30 – in the spike protein of the variant raises concern. 

This is according to Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS). According to her, although Omicron is highly transmissible, further epidemiological data is required to determine if it is more transmissible than the Delta variant.

On Friday 26 November, the World Health Organisation (WHO) declared the new variant, B.1.1.529, a variant of concern (VOC) and assigned it the name Omicron. This assignation was based on advice from the Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), an independent group of experts responsible for monitoring and evaluating emerging variants. The following are considered when categorising a newly identified variant – are there mutations (changes in the viral genes) that are known, or that have the potential, to affect the characteristics of the virus, such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; is there significant community transmission or increasing prevalence in multiple countries over time; are the public health and social measures effective against the variant.

With each new variant, the public health concerns are dependent on the transmissibility of the variant, the ability of the virus to escape immunity from natural infection or from vaccination, and the severity of illness caused by the variant or any change in clinical presentation. In addition, the ability of current diagnostic assays to adequately detect the variant and effectiveness of public health and social measures, must be considered.

We know, we don’t know 

Answers are derived from existing epidemiological data, laboratory research, and theoretical considerations. Although we can make some predictions based on the mutations identified and the location of these mutations, the epidemiological data and laboratory research are essential to answer with certainty, and this can take some time. The presence of a high number of mutations – more than 30 – in the spike protein of Omicron, raises concern. What do we know and what don’t we know?

“What we don’t know is whether these mutations have changed the severity of disease caused by the virus. We do know that the diagnostic PCR tests currently used in South Africa are not compromised by the presence of these mutations, and in fact, one of the molecular assays commonly used to target three regions of the virus, can be used as a rapid biomarker to detect the variant. Although sequencing of the genome is used as confirmation, this assay provides a useful rapid biomarker that can be used to detect the presence of the variant; subsequently, PCR results have shown that the variant is likely already present in most provinces in the country,” says Prof Burt, who currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic pathogens research. 

There is also preliminary epidemiological evidence that reinfections are occurring. According to her, the occurrence of reinfections suggests some degree of immune escape; however, we do not know the extent of immune escape or the contribution of waning immunity towards reinfections. “Laboratory tests, in which the live virus is tested against samples from both recovered and vaccinated people, are required to confirm whether existing antibodies can neutralise the variant. The tests for neutralising antibodies require specialised facilities and is dependent on culturing the virus. 
“These tests are already underway in the country and should provide more information in the coming weeks. 

Neutralising antibody tests, although time consuming, are relatively easy to perform compared to tests to determine the role played by other arms of the immune response.”

Vaccines still best option to fight COVID-19

Prof Burt, who has worked on viral haemorrhagic fevers and arboviruses at the National Institute for Communicable Diseases (NICD), says it is known that vaccines are highly effective in reducing the severity of disease and fatalities in individuals infected with other variants, such as Beta and Delta, despite mutations in critical regions of the spike gene in the variants. 

The epidemiological data acquired from cases and the results of laboratory tests for neutralising capability will contribute towards understanding the effectiveness of the vaccine against Omicron. The questions regarding severity of the disease and level of protection from previous infection and vaccines are priority areas to understand the impact of this variant. The early identification of the variant and the initiation of vital research and data analysis highlight the importance of genomic surveillance.

Cases of Omicron have already been confirmed in Israel, the United Kingdom, Europe, Australia, and Africa. Travel restrictions have previously been shown to be ineffective in stopping the geographical spread of new variants, merely delaying the inevitable, and at significant cost to economies. “We know with certainty that vaccination has reduced the severity of illness and death with previous variants; even in the face of reduced neutralising ability, there was sufficient protection to save lives,” says Prof Burt.  

She concluded, “Globally, the impact of vaccination is evident in countries experiencing fourth waves, with a reduced number of deaths compared to previous waves. Many decisions in life are based on a risk assessment and consideration of the pros and cons. Vaccines save lives. Vaccines definitely boost waning immune responses from natural infection.” 

“This is certainly not the time to reject the vaccine based on perceived risks from inaccurate social media spreading harmful disinformation compared to the known risks associated with contracting COVID-19 and the known protection against severe disease afforded by the vaccines.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept