Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2021 | Story André Damons | Photo Charl Devenish
Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS).

Even though not much is yet known about the new COVID-19 variant, Omicron, the presence of a high number of mutations – more than 30 – in the spike protein of the variant raises concern. 

This is according to Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS). According to her, although Omicron is highly transmissible, further epidemiological data is required to determine if it is more transmissible than the Delta variant.

On Friday 26 November, the World Health Organisation (WHO) declared the new variant, B.1.1.529, a variant of concern (VOC) and assigned it the name Omicron. This assignation was based on advice from the Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), an independent group of experts responsible for monitoring and evaluating emerging variants. The following are considered when categorising a newly identified variant – are there mutations (changes in the viral genes) that are known, or that have the potential, to affect the characteristics of the virus, such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; is there significant community transmission or increasing prevalence in multiple countries over time; are the public health and social measures effective against the variant.

With each new variant, the public health concerns are dependent on the transmissibility of the variant, the ability of the virus to escape immunity from natural infection or from vaccination, and the severity of illness caused by the variant or any change in clinical presentation. In addition, the ability of current diagnostic assays to adequately detect the variant and effectiveness of public health and social measures, must be considered.

We know, we don’t know 

Answers are derived from existing epidemiological data, laboratory research, and theoretical considerations. Although we can make some predictions based on the mutations identified and the location of these mutations, the epidemiological data and laboratory research are essential to answer with certainty, and this can take some time. The presence of a high number of mutations – more than 30 – in the spike protein of Omicron, raises concern. What do we know and what don’t we know?

“What we don’t know is whether these mutations have changed the severity of disease caused by the virus. We do know that the diagnostic PCR tests currently used in South Africa are not compromised by the presence of these mutations, and in fact, one of the molecular assays commonly used to target three regions of the virus, can be used as a rapid biomarker to detect the variant. Although sequencing of the genome is used as confirmation, this assay provides a useful rapid biomarker that can be used to detect the presence of the variant; subsequently, PCR results have shown that the variant is likely already present in most provinces in the country,” says Prof Burt, who currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic pathogens research. 

There is also preliminary epidemiological evidence that reinfections are occurring. According to her, the occurrence of reinfections suggests some degree of immune escape; however, we do not know the extent of immune escape or the contribution of waning immunity towards reinfections. “Laboratory tests, in which the live virus is tested against samples from both recovered and vaccinated people, are required to confirm whether existing antibodies can neutralise the variant. The tests for neutralising antibodies require specialised facilities and is dependent on culturing the virus. 
“These tests are already underway in the country and should provide more information in the coming weeks. 

Neutralising antibody tests, although time consuming, are relatively easy to perform compared to tests to determine the role played by other arms of the immune response.”

Vaccines still best option to fight COVID-19

Prof Burt, who has worked on viral haemorrhagic fevers and arboviruses at the National Institute for Communicable Diseases (NICD), says it is known that vaccines are highly effective in reducing the severity of disease and fatalities in individuals infected with other variants, such as Beta and Delta, despite mutations in critical regions of the spike gene in the variants. 

The epidemiological data acquired from cases and the results of laboratory tests for neutralising capability will contribute towards understanding the effectiveness of the vaccine against Omicron. The questions regarding severity of the disease and level of protection from previous infection and vaccines are priority areas to understand the impact of this variant. The early identification of the variant and the initiation of vital research and data analysis highlight the importance of genomic surveillance.

Cases of Omicron have already been confirmed in Israel, the United Kingdom, Europe, Australia, and Africa. Travel restrictions have previously been shown to be ineffective in stopping the geographical spread of new variants, merely delaying the inevitable, and at significant cost to economies. “We know with certainty that vaccination has reduced the severity of illness and death with previous variants; even in the face of reduced neutralising ability, there was sufficient protection to save lives,” says Prof Burt.  

She concluded, “Globally, the impact of vaccination is evident in countries experiencing fourth waves, with a reduced number of deaths compared to previous waves. Many decisions in life are based on a risk assessment and consideration of the pros and cons. Vaccines save lives. Vaccines definitely boost waning immune responses from natural infection.” 

“This is certainly not the time to reject the vaccine based on perceived risks from inaccurate social media spreading harmful disinformation compared to the known risks associated with contracting COVID-19 and the known protection against severe disease afforded by the vaccines.”

News Archive

Krieket - Kovsies klop SUT
2005-01-31

Johan de Jager - Volksblad OFSKOON die spanne nie op volsterkte was nie, was die superligawedstryd tussen die Universteit van die Vrystaat (UV) en die Sentrale Universiteit vir Tegnologie, Vrystaat (SUT), Saterdag op Tokkiepark in Bloemfontein 'n toonbeeld van goeie klubkrieket. Die Kovsies het hul onoorwonne rekord behou toe hulle met ses paaltjies geseëvier het. Hulle het die wenteiken van 233 lopies in die 48ste boulbeurt oortref. Die voormalige kaptein Gerald Fourie (95 nun) het die aanslag gelei, terwyl die wenspan se Ryan McLaren (2/46 en 46) 'n veelsydige vertoning gelewer het. McLaren het hom op 'n driekuns bevind toe hy die laaste twee paaltjies ingeoes en toe byna 'n vyftigtal gemoker het. Die tuisspan het goed begin. Hy het egter ses paaltjies in die laaste tien boulbeurte verloor. Die Kovsies het mooi herstel nadat hulle 24/2 gehad het. Die tuisspan se Dewald Pretorius het met 2/11 ná agt boulbeurte gespog . Die wedstryd op CBCOB se veld tussen die tuisspan en SUT II is ná 'n ruk se spel aanvanklik afgelas omdat toestande as te gevaarlik bestempel is, maar is later die middag hervat en oor 25 boulbeurte aan 'n kant beslis . SUT II is vir 82 lopies uitgehaal, waarna CBCOB die wenlopies behaal het met nog vier paaltjies staande . Schoemanpark was in Mangaung met vyf paaltjies aan die wenkant teen Rocklands, terwyl Polisie sy tweede agtereenvolgende nederlaag in die tweede ronde gely het nadat die Peshawars hom naelskraap met 'n paaltjie op die UV-ovaal geklop het. Die tuisspan se Ferdi Botha (116) se honderdtal het gehelp dat die Peshawars die wedstryd met nog twee aflewerings oor kon wen nadat Polisie vroeër 221/8 aangeteken het. Die beknopte telkaarte is: SUT 232 (I. O'Neill 37, H. von Rauenstein 67, G. Liebenberg 26, G. McLaren 28; C. Deacon 2/47, R. McLaren 2/46, G. Perry 2/29, C. Ingram 2/44); UV 234/4 (R. McLaren 46, G. Fourie 95 nun, C. Linde 27, E. Weirich 27 nun; D. Pretorius 2/29). Kovsies wen met ses paaltjies. SUT II 82 (J. Labuscagne 21, A. van Deventer 16; J. Chemaly 3/11, M. Mashimbyi 2/7, J. Malao 2/19); CBCOB 84/6 (M. Mashimbyi 22, T. van der Westhuizen 21, P. Stander 21; R. Daniël 2/6, R. Wessels 2/17). CBCOB wen met vier paaltjies. Rocklands 107 (D. Makopanele 22); Schoemanpark 108/5 (J. Smith 37; N. Sefuthi 2/14). Schoemanpark wen met vyf paaltjies. Polisie 221/8 (W. Nel 86, B. Hector 62; N. de Bruin 4/49, J. Mostert 1/19, R. de Kock 2/50); Peshawars 222/9 (F. Botha 116, J. Mostert 26; W. Thies 3/30, E. van Niekerk 3/43). Peshawars wen met 'n paaltjie.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept