Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2021 | Story André Damons | Photo Charl Devenish
Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS).

Even though not much is yet known about the new COVID-19 variant, Omicron, the presence of a high number of mutations – more than 30 – in the spike protein of the variant raises concern. 

This is according to Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS). According to her, although Omicron is highly transmissible, further epidemiological data is required to determine if it is more transmissible than the Delta variant.

On Friday 26 November, the World Health Organisation (WHO) declared the new variant, B.1.1.529, a variant of concern (VOC) and assigned it the name Omicron. This assignation was based on advice from the Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), an independent group of experts responsible for monitoring and evaluating emerging variants. The following are considered when categorising a newly identified variant – are there mutations (changes in the viral genes) that are known, or that have the potential, to affect the characteristics of the virus, such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; is there significant community transmission or increasing prevalence in multiple countries over time; are the public health and social measures effective against the variant.

With each new variant, the public health concerns are dependent on the transmissibility of the variant, the ability of the virus to escape immunity from natural infection or from vaccination, and the severity of illness caused by the variant or any change in clinical presentation. In addition, the ability of current diagnostic assays to adequately detect the variant and effectiveness of public health and social measures, must be considered.

We know, we don’t know 

Answers are derived from existing epidemiological data, laboratory research, and theoretical considerations. Although we can make some predictions based on the mutations identified and the location of these mutations, the epidemiological data and laboratory research are essential to answer with certainty, and this can take some time. The presence of a high number of mutations – more than 30 – in the spike protein of Omicron, raises concern. What do we know and what don’t we know?

“What we don’t know is whether these mutations have changed the severity of disease caused by the virus. We do know that the diagnostic PCR tests currently used in South Africa are not compromised by the presence of these mutations, and in fact, one of the molecular assays commonly used to target three regions of the virus, can be used as a rapid biomarker to detect the variant. Although sequencing of the genome is used as confirmation, this assay provides a useful rapid biomarker that can be used to detect the presence of the variant; subsequently, PCR results have shown that the variant is likely already present in most provinces in the country,” says Prof Burt, who currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic pathogens research. 

There is also preliminary epidemiological evidence that reinfections are occurring. According to her, the occurrence of reinfections suggests some degree of immune escape; however, we do not know the extent of immune escape or the contribution of waning immunity towards reinfections. “Laboratory tests, in which the live virus is tested against samples from both recovered and vaccinated people, are required to confirm whether existing antibodies can neutralise the variant. The tests for neutralising antibodies require specialised facilities and is dependent on culturing the virus. 
“These tests are already underway in the country and should provide more information in the coming weeks. 

Neutralising antibody tests, although time consuming, are relatively easy to perform compared to tests to determine the role played by other arms of the immune response.”

Vaccines still best option to fight COVID-19

Prof Burt, who has worked on viral haemorrhagic fevers and arboviruses at the National Institute for Communicable Diseases (NICD), says it is known that vaccines are highly effective in reducing the severity of disease and fatalities in individuals infected with other variants, such as Beta and Delta, despite mutations in critical regions of the spike gene in the variants. 

The epidemiological data acquired from cases and the results of laboratory tests for neutralising capability will contribute towards understanding the effectiveness of the vaccine against Omicron. The questions regarding severity of the disease and level of protection from previous infection and vaccines are priority areas to understand the impact of this variant. The early identification of the variant and the initiation of vital research and data analysis highlight the importance of genomic surveillance.

Cases of Omicron have already been confirmed in Israel, the United Kingdom, Europe, Australia, and Africa. Travel restrictions have previously been shown to be ineffective in stopping the geographical spread of new variants, merely delaying the inevitable, and at significant cost to economies. “We know with certainty that vaccination has reduced the severity of illness and death with previous variants; even in the face of reduced neutralising ability, there was sufficient protection to save lives,” says Prof Burt.  

She concluded, “Globally, the impact of vaccination is evident in countries experiencing fourth waves, with a reduced number of deaths compared to previous waves. Many decisions in life are based on a risk assessment and consideration of the pros and cons. Vaccines save lives. Vaccines definitely boost waning immune responses from natural infection.” 

“This is certainly not the time to reject the vaccine based on perceived risks from inaccurate social media spreading harmful disinformation compared to the known risks associated with contracting COVID-19 and the known protection against severe disease afforded by the vaccines.”

News Archive

UFS teams up with Department of Agriculture and donates latest farming technology to Oppermans
2009-03-09

 
Attending the recent launch of the latest technology that measures the salinity of soil – the EM38 system – during an information day held in Jacobsdal were, from the left, back: Mr Robert Dlomo, a farmer from Pietermaritzburg in KwaZulu-Natal, Prof. Leon van Rensburg, Department of Soil, Crop and Climate Sciences at the UFS, Mr Sugar Ramakarane, head of the Department of Agriculture in the Free State, Dr Motseki Hlatshwayo, national Department of Agriculture, and Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS; front: Mr Robert Smith and Mr Fagan Scheepers from Oppermansgronde, who will be working with the EM38 system in the area.
Photo: Landbouweekblad
UFS teams up with Department of Agriculture and donates latest farming technology to Oppermans

Emerging and commercial farmers of the Oppermans Community in the Northern Cape will now be able to monitor the salinity levels on their farms effectively for the first time.

This is as a result of a donation of the latest technology that measures the salinity of soil – the EM38 system – which the University of the Free State (UFS) is donating to the community.

The unique project was launched by the Department of Soil, Crop and Climate Sciences at the UFS and the Department of Agriculture in the Free State during an information day held at Jacobsdal recently.

The day was attended by members of the Oppermans Community and representatives of the UFS as well as the Department of Agriculture. Mr Sugar Ramakarane, Head of the Department of Agriculture in the Free State, did the welcoming and several academics from the UFS held discussions about various topics related to the salinity levels in soil.

Since the establishment of the Oppermans Community emerging farmers are now for the first time able to accurately monitor the salinity levels on their farms as well as that of irrigation schemes of commercial farms in the area.

“In a region such as the Northern Cape it is very important that the salinity level of soil is monitored properly. As water is administered to crops, salts accumulate in the soil because the roots leave most of the salts in the soil when it transpires. When the salinity of soil increases, the osmotic potential thereof can also increase, which can seriously damage the water intake of crops and can create loss in yield and income,” said Prof. Leon van Rensburg from the Department of Soil, Crop and Climate Sciences at the UFS and leader of the Oppermans Project.

To assist the farming community of Oppermans to apply precision farming and to measure the salinity level of soil more accurately the latest technology that measures salinity in soil – the EM38 – will be donated to the community. Although the system is used throughout the world, the UFS is the only tertiary institution in the country that owns the latest version of this system.

“We are also training two persons from the Oppermans Community as technicians that will monitor the use of the system. The advantage of the donation of the system for the university is that we can gather data that can be used for research purposes by our Master’s and Doctoral students. We also want to see if water-table heights can be measured with this system,” said Prof. Van Rensburg.

According to him the system has several advantages for the community’s emerging farmers. “For the first time the salinity level of soil can now be measured accurately, salt maps can be drawn up, we can advise farmers about the corrections that need to be made and salinity management plans can be compiled,” he said.

The system is very accurate as it takes measurements every 200 mm while it is pulled by a four-wheel motorbike. The readings provide the distribution of salts up to a soil depth of 1 500 mm. “In the past the measuring of salinity levels was time-consuming and the cost thereof was R90 for one sample. The new system is more cost-effective,” stated Prof. Van Rensburg.

The instruments will be handed over to the African Spirit Group of the Oppermans Community, who will then become the owners. The service to farmers will then be managed by an operational group consisting of people from the Oppermans Community, a postgraduate student who can compile salinity maps and Prof. Van Rensburg, who will act as project leader and advisor.

The system will also be made available to farmers at the Riet River and Vaalharts Schemes.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
9 March 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept