Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2021 | Story André Damons | Photo Charl Devenish
Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS).

Even though not much is yet known about the new COVID-19 variant, Omicron, the presence of a high number of mutations – more than 30 – in the spike protein of the variant raises concern. 

This is according to Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS). According to her, although Omicron is highly transmissible, further epidemiological data is required to determine if it is more transmissible than the Delta variant.

On Friday 26 November, the World Health Organisation (WHO) declared the new variant, B.1.1.529, a variant of concern (VOC) and assigned it the name Omicron. This assignation was based on advice from the Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), an independent group of experts responsible for monitoring and evaluating emerging variants. The following are considered when categorising a newly identified variant – are there mutations (changes in the viral genes) that are known, or that have the potential, to affect the characteristics of the virus, such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; is there significant community transmission or increasing prevalence in multiple countries over time; are the public health and social measures effective against the variant.

With each new variant, the public health concerns are dependent on the transmissibility of the variant, the ability of the virus to escape immunity from natural infection or from vaccination, and the severity of illness caused by the variant or any change in clinical presentation. In addition, the ability of current diagnostic assays to adequately detect the variant and effectiveness of public health and social measures, must be considered.

We know, we don’t know 

Answers are derived from existing epidemiological data, laboratory research, and theoretical considerations. Although we can make some predictions based on the mutations identified and the location of these mutations, the epidemiological data and laboratory research are essential to answer with certainty, and this can take some time. The presence of a high number of mutations – more than 30 – in the spike protein of Omicron, raises concern. What do we know and what don’t we know?

“What we don’t know is whether these mutations have changed the severity of disease caused by the virus. We do know that the diagnostic PCR tests currently used in South Africa are not compromised by the presence of these mutations, and in fact, one of the molecular assays commonly used to target three regions of the virus, can be used as a rapid biomarker to detect the variant. Although sequencing of the genome is used as confirmation, this assay provides a useful rapid biomarker that can be used to detect the presence of the variant; subsequently, PCR results have shown that the variant is likely already present in most provinces in the country,” says Prof Burt, who currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic pathogens research. 

There is also preliminary epidemiological evidence that reinfections are occurring. According to her, the occurrence of reinfections suggests some degree of immune escape; however, we do not know the extent of immune escape or the contribution of waning immunity towards reinfections. “Laboratory tests, in which the live virus is tested against samples from both recovered and vaccinated people, are required to confirm whether existing antibodies can neutralise the variant. The tests for neutralising antibodies require specialised facilities and is dependent on culturing the virus. 
“These tests are already underway in the country and should provide more information in the coming weeks. 

Neutralising antibody tests, although time consuming, are relatively easy to perform compared to tests to determine the role played by other arms of the immune response.”

Vaccines still best option to fight COVID-19

Prof Burt, who has worked on viral haemorrhagic fevers and arboviruses at the National Institute for Communicable Diseases (NICD), says it is known that vaccines are highly effective in reducing the severity of disease and fatalities in individuals infected with other variants, such as Beta and Delta, despite mutations in critical regions of the spike gene in the variants. 

The epidemiological data acquired from cases and the results of laboratory tests for neutralising capability will contribute towards understanding the effectiveness of the vaccine against Omicron. The questions regarding severity of the disease and level of protection from previous infection and vaccines are priority areas to understand the impact of this variant. The early identification of the variant and the initiation of vital research and data analysis highlight the importance of genomic surveillance.

Cases of Omicron have already been confirmed in Israel, the United Kingdom, Europe, Australia, and Africa. Travel restrictions have previously been shown to be ineffective in stopping the geographical spread of new variants, merely delaying the inevitable, and at significant cost to economies. “We know with certainty that vaccination has reduced the severity of illness and death with previous variants; even in the face of reduced neutralising ability, there was sufficient protection to save lives,” says Prof Burt.  

She concluded, “Globally, the impact of vaccination is evident in countries experiencing fourth waves, with a reduced number of deaths compared to previous waves. Many decisions in life are based on a risk assessment and consideration of the pros and cons. Vaccines save lives. Vaccines definitely boost waning immune responses from natural infection.” 

“This is certainly not the time to reject the vaccine based on perceived risks from inaccurate social media spreading harmful disinformation compared to the known risks associated with contracting COVID-19 and the known protection against severe disease afforded by the vaccines.”

News Archive

UFS scientists involved in groundbreaking research to protect rhino horns
2010-07-27

Pictured from the left are: Prof. Paul Grobler (UFS), Prof. Antoinette Kotze (NZG) and Ms. Karen Ehlers (UFS).
Photo: Supplied

Scientists at the University of the Free State (UFS) are involved in a research study that will help to trace the source of any southern white rhino product to a specific geographic location.

This is an initiative of the National Zoological Gardens of South Africa (NZG).

Prof. Paul Grobler, who is heading the project in the Department of Genetics at the UFS, said that the research might even allow the identification of the individual animal from which a product was derived. This would allow law enforcement agencies not only to determine with certainty whether rhino horn, traded illegally on the international black market, had its origin in South Africa, but also from which region of South Africa the product came.

This additional knowledge is expected to have a major impact on the illicit trade in rhino horn and provide a potent legal club to get at rhino horn smugglers and traders.

The full research team consists of Prof. Grobler; Christiaan Labuschagne, a Ph.D. student at the UFS; Prof. Antoinette Kotze from the NZG, who is also an affiliated professor at the UFS; and Dr Desire Dalton, also from the NZG.

The team’s research involves the identification of small differences in the genetic code among white rhino populations in different regions of South Africa. The genetic code of every species is unique, and is composed of a sequence of the four nucleotide bases G, A, T and C that are inherited from one generation to the next. When one nucleotide base is changed or mutated in an individual, this mutated base is also inherited by the individual's progeny.

If, after many generations, this changed base is present in at least 1% of the individuals of a group, it is described as a single nucleotide polymorphism (SNP), pronounced "snip". Breeding populations that are geographically and reproductively isolated often contain different patterns of such SNPs, which act as a unique genetic signature for each population.

The team is assembling a detailed list of all SNPs found in white rhinos from different regions in South Africa. The work is done in collaboration with the Pretoria-based company, Inqaba Biotech, who is performing the nucleotide sequencing that is required for the identification of the SNPs.

Financial support for the project is provided by the Advanced Biomolecular Research cluster at the UFS.

The southern white rhino was once thought to be extinct, but in a conservation success story the species was boosted from an initial population of about 100 individuals located in KwaZulu-Natal at the end of the 19th century, to the present population of about 15 000 individuals. The southern white rhino is still, however, listed as “near threatened” by the World Wildlife Fund (WWF).

Media Release:
Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za 
27 July 2010



 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept