Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2021 | Story André Damons | Photo Charl Devenish
Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS).

Even though not much is yet known about the new COVID-19 variant, Omicron, the presence of a high number of mutations – more than 30 – in the spike protein of the variant raises concern. 

This is according to Prof Felicity Burt, expert in arbovirology in the Division of Virology at the University of the Free State (UFS) and the National Health Laboratory Service (NHLS). According to her, although Omicron is highly transmissible, further epidemiological data is required to determine if it is more transmissible than the Delta variant.

On Friday 26 November, the World Health Organisation (WHO) declared the new variant, B.1.1.529, a variant of concern (VOC) and assigned it the name Omicron. This assignation was based on advice from the Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), an independent group of experts responsible for monitoring and evaluating emerging variants. The following are considered when categorising a newly identified variant – are there mutations (changes in the viral genes) that are known, or that have the potential, to affect the characteristics of the virus, such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; is there significant community transmission or increasing prevalence in multiple countries over time; are the public health and social measures effective against the variant.

With each new variant, the public health concerns are dependent on the transmissibility of the variant, the ability of the virus to escape immunity from natural infection or from vaccination, and the severity of illness caused by the variant or any change in clinical presentation. In addition, the ability of current diagnostic assays to adequately detect the variant and effectiveness of public health and social measures, must be considered.

We know, we don’t know 

Answers are derived from existing epidemiological data, laboratory research, and theoretical considerations. Although we can make some predictions based on the mutations identified and the location of these mutations, the epidemiological data and laboratory research are essential to answer with certainty, and this can take some time. The presence of a high number of mutations – more than 30 – in the spike protein of Omicron, raises concern. What do we know and what don’t we know?

“What we don’t know is whether these mutations have changed the severity of disease caused by the virus. We do know that the diagnostic PCR tests currently used in South Africa are not compromised by the presence of these mutations, and in fact, one of the molecular assays commonly used to target three regions of the virus, can be used as a rapid biomarker to detect the variant. Although sequencing of the genome is used as confirmation, this assay provides a useful rapid biomarker that can be used to detect the presence of the variant; subsequently, PCR results have shown that the variant is likely already present in most provinces in the country,” says Prof Burt, who currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic pathogens research. 

There is also preliminary epidemiological evidence that reinfections are occurring. According to her, the occurrence of reinfections suggests some degree of immune escape; however, we do not know the extent of immune escape or the contribution of waning immunity towards reinfections. “Laboratory tests, in which the live virus is tested against samples from both recovered and vaccinated people, are required to confirm whether existing antibodies can neutralise the variant. The tests for neutralising antibodies require specialised facilities and is dependent on culturing the virus. 
“These tests are already underway in the country and should provide more information in the coming weeks. 

Neutralising antibody tests, although time consuming, are relatively easy to perform compared to tests to determine the role played by other arms of the immune response.”

Vaccines still best option to fight COVID-19

Prof Burt, who has worked on viral haemorrhagic fevers and arboviruses at the National Institute for Communicable Diseases (NICD), says it is known that vaccines are highly effective in reducing the severity of disease and fatalities in individuals infected with other variants, such as Beta and Delta, despite mutations in critical regions of the spike gene in the variants. 

The epidemiological data acquired from cases and the results of laboratory tests for neutralising capability will contribute towards understanding the effectiveness of the vaccine against Omicron. The questions regarding severity of the disease and level of protection from previous infection and vaccines are priority areas to understand the impact of this variant. The early identification of the variant and the initiation of vital research and data analysis highlight the importance of genomic surveillance.

Cases of Omicron have already been confirmed in Israel, the United Kingdom, Europe, Australia, and Africa. Travel restrictions have previously been shown to be ineffective in stopping the geographical spread of new variants, merely delaying the inevitable, and at significant cost to economies. “We know with certainty that vaccination has reduced the severity of illness and death with previous variants; even in the face of reduced neutralising ability, there was sufficient protection to save lives,” says Prof Burt.  

She concluded, “Globally, the impact of vaccination is evident in countries experiencing fourth waves, with a reduced number of deaths compared to previous waves. Many decisions in life are based on a risk assessment and consideration of the pros and cons. Vaccines save lives. Vaccines definitely boost waning immune responses from natural infection.” 

“This is certainly not the time to reject the vaccine based on perceived risks from inaccurate social media spreading harmful disinformation compared to the known risks associated with contracting COVID-19 and the known protection against severe disease afforded by the vaccines.”

News Archive

Relief for baby and child care at the UFS with donation from Fuchs Foundation
2007-11-17

 

At the launch of the Beds of Hope campaign were, from the left: Dr Riaan Els, Chief Executive Officer of the Carl en Emily Fuchs Foundation, Prof. André Venter (Head of the Department of Paediatrics and Child Care), Ms Corné Booyens (National Grants Manager at the Carl en Emily Fuchs Foundation), Dr Nick van Zyl (Clinical Head at Universitas Hospital), and Prof. Niel Viljoen (Chief Director: Operations).
Photo: Leonie Bolleurs

Relief for baby and child care at the UFS with donation from Fuchs Foundation

The Department of Paediatrics and Child Health at the University of the Free State (UFS) has received relief for their need of specialised healthcare for babies and children with a donation of R1,5 million from the Carl and Emily Fuchs Foundation.

As a result of this, the Beds of Hope campaign was launched today on the Main Campus in Bloemfontein. With the campaign, the department wants to address the serious need for specialised healthcare for babies and children in the central regions of South Africa.

The department is one of four out of 19 children hospitals in South Africa to receive such a donation. .

“We take care of babies and children in the Universitas and Pelonomi Hospitals in Bloemfontein who have a serious need for specialised healthcare. We are, however, the only supplier of this kind of care in the Free State, North West, Eastern Cape and Lesotho and are responsible for the specialised healthcare of more than 100 000 children. Many of our equipment are outdated and must be urgently repaired or replaced,” said Prof. André Venter, Head of the Department of Paediatrics and Child Care at the UFS.

“Because we are concerned about our patients, the department launched the Beds of Hope campaign with the help of the donation we received from the Fuchs Foundation. With the campaign, we aim to raise some R15 million in the space of two years to purchase beds and specialised equipment for the intensive care and high care units for both hospitals,” said Prof. Venter.
According to Prof. Venter, this includes babies and children with needs for specialised healthcare in the fields of intensive care, oncology, cardiology, neurology, endocrinology, gastro-enterology, neonatology and infectious diseases.

“About ten children are currently not receiving the care they need due to the lack of beds in the intensive care unit. Much more neonates can annually receive critical care if we can supply adequate facilities,” said Prof. Venter.

The other hospitals that are also supported by the Fuchs Foundation’s donation are: Healing Jozi Kids, Boikanyo Foundation and the Groote Schuur Hospital’s neonatal department.

The donation is the beginning of the first phase of the national Fuchs Healing Kids Project, which aims to improve the quality of paediatric care in South Africa.

The aim of this phase is to assist the hospitals to develop the systems and skills needed to collect more money. The research part of phase two and the building up of the hospitals’ children trust funds to be self self-supporting, will happen simultaneously. This phase will be launched early in 2008.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 November 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept