Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2021 | Story Leonie Bolleurs | Photo Supplied

Two students, Jenny Josefsson and Janie Swanepoel in the Faculty of the Humanities at the University of the Free State (UFS), graduated with joint degrees during the December graduation ceremonies. 

Josefsson received her degree from both the UFS and Radboud University in Nijmegen in the Netherlands, and Swanepoel was awarded her degree by the UFS and the University of Cologne, Germany. 

According to the Office for International Affairs (OIA) at the UFS – with a joint degree, the candidate receives an academic qualification from more than one institution at the same time. 

Zenzele Mdletshe from the OIA explains that a student will register at two different institutions at the same time, with the goal of obtaining one qualification. “Upon completion, the home institution will issue a joint degree certificate while the host institution will issue a degree supplement. For both Josefsson and Swanepoel, the UFS was the home institution.”

The UFS also awarded two joint degrees in 2020.

Social change, inequality, and land issues

Josefsson, who was born in Sweden, matriculated at Ljusdals Gymnasieskola in 1997. She obtained both her Environmental Science and Development Studies degree and her cum laude master’s degree in Environmental Science at Södertörn University. As an exchange student, she spent one semester in 2006 at the University of KwaZulu-Natal, and two years later started her career as an environmental consultant in Cape Town. 

She proceeded to do her PhD, and as part of her academic journey towards completing her doctoral degree, she joined a group of doctoral students from South Africa and the Netherlands, whose research fell under a project titled ‘Farm Dwellers, the Forgotten People? Conversions to Conservation in KwaZulu-Natal and the Eastern Cape’. The Dutch science-funding organisation, NWO-WOTRO Science for Global Development, funded the research. 

Based in the Department of Geography at the UFS, she continued with her research and started fieldwork in KwaZulu-Natal in 2013. During and after her fieldwork, she wrote several articles, which – together with an introductory chapter – formed the body of work submitted for her doctorate. 

Josefsson received her Doctor of Philosophy, specialising in Geography. The title of her study is: Battles over boundaries and belonging: violence, wilderness and spatial reconfigurations in the conversion of farm landscapes in KwaZulu-Natal, and highlights the ground-level politics of land issues. Her research is an important contribution to the wider debate around social change, inequality, and land issues in South Africa.

Her thesis was examined by the UFS according to South African examination procedures, and then by a body of examiners appointed by Radboud University. She defended her thesis during a Zoom session with Radboud University in October 2021.

Josefsson, who has worked on various projects in Southern Africa and South Asia, is currently working as a programme coordinator for a climate services project in the SADC region. 

Rethinking commercial ranching in rural Southern Africa

Completing school in Bloemfontein, Swanepoel obtained her BA at Stellenbosch University, and her BA Honours in Social Anthropology at the University of Cape Town. In 2013, she received her master’s degree in Social Anthropology at Stellenbosch University. 

Seven years later, she successfully submitted her PhD dissertation in Social Anthropology at the UFS. Her PhD forms part of a co-tutelage agreement with the University of Cologne.

Swanepoel, who is working in social compliance, received the Doctor of Philosophy with specialisation in Anthropology. The title of her dissertation is: In the land of the jackals: Postcolonial aridity in Southern Namibia. She investigates multispecies relations in a changing Namibian Boer community.

Her dissertation suggests the need to rethink commercial ranching in rural Southern Africa. “Given the glocal increase in aridity, this research shows the limitations of engaging with the decolonisation of land and the impact of climate change in ways that perpetuate the relation between nature and culture.”

She was invited to rework her dissertation into a book.

Advantages of joint degree

According to Mdletshe, there are several advantages to a joint degree. “The students involved in this programme have a chance of pursuing an international academic programme while enrolled at the UFS.”

He adds: “The students will also have a chance to be mentored and guided by supervisors from different institutions, bringing different perspectives. Such programmes will not only expose students to different lifestyles and cultures – as they will travel to the host institution from time to time – but it will also introduce them to different methods of teaching and learning.

He believes that with the input of international institutions, the joint degree will give students a competitive edge.

“We encourage students and academics who are interested in this programme to contact Kagiso Ngake (ngakekm@ufs.ac.za) or myself (mdletshezp@ufs.ac.za) in the Partnership Office at the Office for International Affairs,” says Mdletshe.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept