Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2021 | Story Leonie Bolleurs | Photo Supplied

Two students, Jenny Josefsson and Janie Swanepoel in the Faculty of the Humanities at the University of the Free State (UFS), graduated with joint degrees during the December graduation ceremonies. 

Josefsson received her degree from both the UFS and Radboud University in Nijmegen in the Netherlands, and Swanepoel was awarded her degree by the UFS and the University of Cologne, Germany. 

According to the Office for International Affairs (OIA) at the UFS – with a joint degree, the candidate receives an academic qualification from more than one institution at the same time. 

Zenzele Mdletshe from the OIA explains that a student will register at two different institutions at the same time, with the goal of obtaining one qualification. “Upon completion, the home institution will issue a joint degree certificate while the host institution will issue a degree supplement. For both Josefsson and Swanepoel, the UFS was the home institution.”

The UFS also awarded two joint degrees in 2020.

Social change, inequality, and land issues

Josefsson, who was born in Sweden, matriculated at Ljusdals Gymnasieskola in 1997. She obtained both her Environmental Science and Development Studies degree and her cum laude master’s degree in Environmental Science at Södertörn University. As an exchange student, she spent one semester in 2006 at the University of KwaZulu-Natal, and two years later started her career as an environmental consultant in Cape Town. 

She proceeded to do her PhD, and as part of her academic journey towards completing her doctoral degree, she joined a group of doctoral students from South Africa and the Netherlands, whose research fell under a project titled ‘Farm Dwellers, the Forgotten People? Conversions to Conservation in KwaZulu-Natal and the Eastern Cape’. The Dutch science-funding organisation, NWO-WOTRO Science for Global Development, funded the research. 

Based in the Department of Geography at the UFS, she continued with her research and started fieldwork in KwaZulu-Natal in 2013. During and after her fieldwork, she wrote several articles, which – together with an introductory chapter – formed the body of work submitted for her doctorate. 

Josefsson received her Doctor of Philosophy, specialising in Geography. The title of her study is: Battles over boundaries and belonging: violence, wilderness and spatial reconfigurations in the conversion of farm landscapes in KwaZulu-Natal, and highlights the ground-level politics of land issues. Her research is an important contribution to the wider debate around social change, inequality, and land issues in South Africa.

Her thesis was examined by the UFS according to South African examination procedures, and then by a body of examiners appointed by Radboud University. She defended her thesis during a Zoom session with Radboud University in October 2021.

Josefsson, who has worked on various projects in Southern Africa and South Asia, is currently working as a programme coordinator for a climate services project in the SADC region. 

Rethinking commercial ranching in rural Southern Africa

Completing school in Bloemfontein, Swanepoel obtained her BA at Stellenbosch University, and her BA Honours in Social Anthropology at the University of Cape Town. In 2013, she received her master’s degree in Social Anthropology at Stellenbosch University. 

Seven years later, she successfully submitted her PhD dissertation in Social Anthropology at the UFS. Her PhD forms part of a co-tutelage agreement with the University of Cologne.

Swanepoel, who is working in social compliance, received the Doctor of Philosophy with specialisation in Anthropology. The title of her dissertation is: In the land of the jackals: Postcolonial aridity in Southern Namibia. She investigates multispecies relations in a changing Namibian Boer community.

Her dissertation suggests the need to rethink commercial ranching in rural Southern Africa. “Given the glocal increase in aridity, this research shows the limitations of engaging with the decolonisation of land and the impact of climate change in ways that perpetuate the relation between nature and culture.”

She was invited to rework her dissertation into a book.

Advantages of joint degree

According to Mdletshe, there are several advantages to a joint degree. “The students involved in this programme have a chance of pursuing an international academic programme while enrolled at the UFS.”

He adds: “The students will also have a chance to be mentored and guided by supervisors from different institutions, bringing different perspectives. Such programmes will not only expose students to different lifestyles and cultures – as they will travel to the host institution from time to time – but it will also introduce them to different methods of teaching and learning.

He believes that with the input of international institutions, the joint degree will give students a competitive edge.

“We encourage students and academics who are interested in this programme to contact Kagiso Ngake (ngakekm@ufs.ac.za) or myself (mdletshezp@ufs.ac.za) in the Partnership Office at the Office for International Affairs,” says Mdletshe.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept