Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2021 | Story Leonie Bolleurs | Photo Supplied

Two students, Jenny Josefsson and Janie Swanepoel in the Faculty of the Humanities at the University of the Free State (UFS), graduated with joint degrees during the December graduation ceremonies. 

Josefsson received her degree from both the UFS and Radboud University in Nijmegen in the Netherlands, and Swanepoel was awarded her degree by the UFS and the University of Cologne, Germany. 

According to the Office for International Affairs (OIA) at the UFS – with a joint degree, the candidate receives an academic qualification from more than one institution at the same time. 

Zenzele Mdletshe from the OIA explains that a student will register at two different institutions at the same time, with the goal of obtaining one qualification. “Upon completion, the home institution will issue a joint degree certificate while the host institution will issue a degree supplement. For both Josefsson and Swanepoel, the UFS was the home institution.”

The UFS also awarded two joint degrees in 2020.

Social change, inequality, and land issues

Josefsson, who was born in Sweden, matriculated at Ljusdals Gymnasieskola in 1997. She obtained both her Environmental Science and Development Studies degree and her cum laude master’s degree in Environmental Science at Södertörn University. As an exchange student, she spent one semester in 2006 at the University of KwaZulu-Natal, and two years later started her career as an environmental consultant in Cape Town. 

She proceeded to do her PhD, and as part of her academic journey towards completing her doctoral degree, she joined a group of doctoral students from South Africa and the Netherlands, whose research fell under a project titled ‘Farm Dwellers, the Forgotten People? Conversions to Conservation in KwaZulu-Natal and the Eastern Cape’. The Dutch science-funding organisation, NWO-WOTRO Science for Global Development, funded the research. 

Based in the Department of Geography at the UFS, she continued with her research and started fieldwork in KwaZulu-Natal in 2013. During and after her fieldwork, she wrote several articles, which – together with an introductory chapter – formed the body of work submitted for her doctorate. 

Josefsson received her Doctor of Philosophy, specialising in Geography. The title of her study is: Battles over boundaries and belonging: violence, wilderness and spatial reconfigurations in the conversion of farm landscapes in KwaZulu-Natal, and highlights the ground-level politics of land issues. Her research is an important contribution to the wider debate around social change, inequality, and land issues in South Africa.

Her thesis was examined by the UFS according to South African examination procedures, and then by a body of examiners appointed by Radboud University. She defended her thesis during a Zoom session with Radboud University in October 2021.

Josefsson, who has worked on various projects in Southern Africa and South Asia, is currently working as a programme coordinator for a climate services project in the SADC region. 

Rethinking commercial ranching in rural Southern Africa

Completing school in Bloemfontein, Swanepoel obtained her BA at Stellenbosch University, and her BA Honours in Social Anthropology at the University of Cape Town. In 2013, she received her master’s degree in Social Anthropology at Stellenbosch University. 

Seven years later, she successfully submitted her PhD dissertation in Social Anthropology at the UFS. Her PhD forms part of a co-tutelage agreement with the University of Cologne.

Swanepoel, who is working in social compliance, received the Doctor of Philosophy with specialisation in Anthropology. The title of her dissertation is: In the land of the jackals: Postcolonial aridity in Southern Namibia. She investigates multispecies relations in a changing Namibian Boer community.

Her dissertation suggests the need to rethink commercial ranching in rural Southern Africa. “Given the glocal increase in aridity, this research shows the limitations of engaging with the decolonisation of land and the impact of climate change in ways that perpetuate the relation between nature and culture.”

She was invited to rework her dissertation into a book.

Advantages of joint degree

According to Mdletshe, there are several advantages to a joint degree. “The students involved in this programme have a chance of pursuing an international academic programme while enrolled at the UFS.”

He adds: “The students will also have a chance to be mentored and guided by supervisors from different institutions, bringing different perspectives. Such programmes will not only expose students to different lifestyles and cultures – as they will travel to the host institution from time to time – but it will also introduce them to different methods of teaching and learning.

He believes that with the input of international institutions, the joint degree will give students a competitive edge.

“We encourage students and academics who are interested in this programme to contact Kagiso Ngake (ngakekm@ufs.ac.za) or myself (mdletshezp@ufs.ac.za) in the Partnership Office at the Office for International Affairs,” says Mdletshe.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept