Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Leonie Bolleurs | Photo Supplied
UFS loveLife Computer Graduations
The group of 90 members of the Botshabelo community who successfully completed the 12-week ICT Services short-learning course through a collaboration between the UFS Directorate Community Engagement, the Department of Computer Science and Informatics, and the youth leadership organisation, loveLife.

With the COVID-19 pandemic, many people will look back at 2020 and 2021 with emotions of depression, anxiety, and hopelessness. But for a group of close to 200 community members in Botshabelo, the past two years have not only signified one of their biggest achievements in life; for them, the day that they graduated is also holding the promise of a new beginning.

Both this year’s group and the group of 100 community members who enrolled for the two ICT short learning courses in 2020, successfully completed the programme.

“After 12 weeks of training, the community members were very happy to receive their certificates,” says Alfi Moolman of the Directorate Community Engagement at the University of the Free State (UFS).

According to Moolman, this Information Technology service-learning project is a wonderful example of how the UFS responds to the needs of the community and addresses the digital divide through its Service-Learning programme.

Aiming for 100% digital literacy

Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics who is also doing his PhD in Computer Information Systems, is focusing on the digital divide in his research study, titled: An exploration of service-learning strategies to address the South African digital divide: A Critical Utopian Action Research Approach. He quotes Molawa, who defines the digital divide as the separation of those who have access to digital information and communications technology and those who do not. “Molawa has confirmed that some of the challenges to information and communication technology (ICT) access in Africa have been caused by poverty due to high levels of unemployment, illiteracy, and skills shortage.”

In his study, Fouché states that South Africa is aiming for 100% digital literacy and skills to leverage the power of modern ICT for economic appropriation and to address inequity.

In his investigation, Fouché found that increasing the level of digital skills is the responsibility of many different stakeholders, from governments to universities. “Universities may play a vital role in helping to bridge the digital divide by providing free or affordable access to digital skills training and qualifications focused on groups from marginalised areas.”

He is currently concluding the last phase of his PhD study, which included the implementation of the service-learning action plan with the Botshabelo community – engaging them to strengthen the response to digital literacy.

Equipped with 21st century computer literacy skills

Moolman says they had to think of innovative ways to ensure that students continue to achieve their learning outcomes during lockdown. “A blended learning approach was decided on, where we introduced videos of the sessions that would have been facilitated face to face in the past.”

“As a collective change facilitator in the process, I connected Fouché and loveLife, a youth leadership organisation that has a Cyber Y lab at their youth centre in Botshabelo.”

“The match was a win. loveLife was equipping their target audience with 21st century computer literacy skills, Fouché could continue with his PhD, and his students have achieved their learning outcomes.”

Felix Morobe, the provincial manager of loveLife, believes the skills development opportunities provided by the UFS through their service-learning programmes are benefiting and growing young people in the community.

He says this programme has meant a great deal to the community, as it adds to their CVs. “Moreover, it also carries the logo of one of the best and most well-recognised universities. This course was a big motivation for the members of the community who attended; saying to them, ‘yes you can do it, despite the challenges that the country is facing in terms of youth unemployment’.”

Feedback from some of the attendees of the course, include, “I wish this course could continue and benefit others”; "I am one step ahead of those who did not attend the course"; and "I am going to apply for work now that I have this additional certificate".

“This is a brilliant example of engaged scholarship,” concludes Moolman.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept