Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Leonie Bolleurs | Photo Supplied
UFS loveLife Computer Graduations
The group of 90 members of the Botshabelo community who successfully completed the 12-week ICT Services short-learning course through a collaboration between the UFS Directorate Community Engagement, the Department of Computer Science and Informatics, and the youth leadership organisation, loveLife.

With the COVID-19 pandemic, many people will look back at 2020 and 2021 with emotions of depression, anxiety, and hopelessness. But for a group of close to 200 community members in Botshabelo, the past two years have not only signified one of their biggest achievements in life; for them, the day that they graduated is also holding the promise of a new beginning.

Both this year’s group and the group of 100 community members who enrolled for the two ICT short learning courses in 2020, successfully completed the programme.

“After 12 weeks of training, the community members were very happy to receive their certificates,” says Alfi Moolman of the Directorate Community Engagement at the University of the Free State (UFS).

According to Moolman, this Information Technology service-learning project is a wonderful example of how the UFS responds to the needs of the community and addresses the digital divide through its Service-Learning programme.

Aiming for 100% digital literacy

Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics who is also doing his PhD in Computer Information Systems, is focusing on the digital divide in his research study, titled: An exploration of service-learning strategies to address the South African digital divide: A Critical Utopian Action Research Approach. He quotes Molawa, who defines the digital divide as the separation of those who have access to digital information and communications technology and those who do not. “Molawa has confirmed that some of the challenges to information and communication technology (ICT) access in Africa have been caused by poverty due to high levels of unemployment, illiteracy, and skills shortage.”

In his study, Fouché states that South Africa is aiming for 100% digital literacy and skills to leverage the power of modern ICT for economic appropriation and to address inequity.

In his investigation, Fouché found that increasing the level of digital skills is the responsibility of many different stakeholders, from governments to universities. “Universities may play a vital role in helping to bridge the digital divide by providing free or affordable access to digital skills training and qualifications focused on groups from marginalised areas.”

He is currently concluding the last phase of his PhD study, which included the implementation of the service-learning action plan with the Botshabelo community – engaging them to strengthen the response to digital literacy.

Equipped with 21st century computer literacy skills

Moolman says they had to think of innovative ways to ensure that students continue to achieve their learning outcomes during lockdown. “A blended learning approach was decided on, where we introduced videos of the sessions that would have been facilitated face to face in the past.”

“As a collective change facilitator in the process, I connected Fouché and loveLife, a youth leadership organisation that has a Cyber Y lab at their youth centre in Botshabelo.”

“The match was a win. loveLife was equipping their target audience with 21st century computer literacy skills, Fouché could continue with his PhD, and his students have achieved their learning outcomes.”

Felix Morobe, the provincial manager of loveLife, believes the skills development opportunities provided by the UFS through their service-learning programmes are benefiting and growing young people in the community.

He says this programme has meant a great deal to the community, as it adds to their CVs. “Moreover, it also carries the logo of one of the best and most well-recognised universities. This course was a big motivation for the members of the community who attended; saying to them, ‘yes you can do it, despite the challenges that the country is facing in terms of youth unemployment’.”

Feedback from some of the attendees of the course, include, “I wish this course could continue and benefit others”; "I am one step ahead of those who did not attend the course"; and "I am going to apply for work now that I have this additional certificate".

“This is a brilliant example of engaged scholarship,” concludes Moolman.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept