Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Leonie Bolleurs | Photo Sonia Small
Namibia university
The Office for International Affairs at the UFS recently hosted a delegation from the Namibia University of Science and Technology. Pictured here are, from the left, front: Seithati Ramonaheng, UFS International Scholarships in the Office for International Affairs (OIA); Dr Erling Kavita; Dr Erold Naomab; Prof Yonas Bahta; back: Kagiso Ngake, UFS Partnerships in the OIA; Cornelius Hagenmeier; Zenzele Mdletshe, UFS Partnerships in the OIA; and Dr Falko Buschke, Centre for Environmental Management.

The Office for International Affairs (OIA) at the University of the Free State (UFS) recently (25 November 2021) hosted a delegation from the Namibia University of Science and Technology (NUST).

During deliberations, the two institutions discussed the possibility of formalising a partnership and it was agreed that the OIA would lead this process through its Partnership portfolio. The UFS and NUST are looking to work together and share information on the development of a COVID-19 vaccination policy, leveraging on the Germany/Namibia green hydrogen partnership, joining forces on the application for centres of excellence administered by the African Union, establishing staff and student exchange programmes, and intensifying their research collaborations.

Cornelius Hagenmeier, the Director of the Office for International Affairs (OIA) at the UFS, chaired the meeting with Dr Erold Naomab, the Vice-Chancellor of NUST, and his adviser, Dr Erling Kavita. Prof Yonas Bahta, Associate Professor in the UFS Department of Agricultural Economics, and Dr Falko Buschke, Senior Lecturer in the UFS Centre for Environmental Management, also attended the meeting and reported on their existing academic collaborations with NUST.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept