Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Michelle Nothling | Photo Supplied
Lentsu Nchabeleng
Dr Ntheno Nchabeleng was appointed as the Deputy Director in the Gender and Anti-Discrimination Office within the Unit for Institutional Change and Social Justice.

A total of 10 006 rape cases were reported between April and June 2021. This is according to the latest SA crime statistics for the first quarter of 2021/2022. From a sample of 5 439 of these rape cases, 3 766 of incidents took place in the victim’s home or that of the rapist. A shadow pandemic of gender-based violence against our women and children is raging in South Africa.

It is within this global and local context that the Gender and Anti-Discrimination Office (GEADO) at the university is making inroads into supporting survivors of gender-based violence (GBV) and changing gender stereotypes.

GEADO in focus

GEADO is situated within the Unit for Institutional Change and Social Justice on the Bloemfontein Campus. It is mandated to deal with incidents of unfair discrimination and GBV as it relates to the UFS community, and to conduct advocacy and training in these areas. Deputy Director of GEADO, Dr Ntheno Nchabeleng, explains that “through high-impact practices and interventions, the Office works to systematically reduce case attrition to ensure that all reports and cases follow procedurally just processes”.

GEADO has been established at all the UFS campuses with well-trained and fully equipped Senior Gender Officers leading each. Geraldine Langau—supported by research assistant Delisile Mngadi—is managing the office at the Bloemfontein Campus, Chelepe Mocwana the Qwaqwa Campus, and Sivuyisiwe Magayana oversees the South Campus office.

Addressing gender-based violence

Prevention and response to GBV are at the core of GEADO’s work. With our country wracked by sexual violence and femicide, “it has become a nightmare to be a woman in South Africa”, Dr Nchabeleng says.

Its preventative efforts focus on the underlying causes of GBV to transform patriarchal notions, misogynistic norms, power imbalances, and toxic gender stereotypes. Fostering collaboration with various strategic partners to strengthen its impact, GEADO recently started working with Amnesty International Sub-Saharan Africa and Amnesty International Latin America to spread awareness on various forms of violence experienced by vulnerable populations. GEADO has also partnered with other local stakeholders in an effort to eradicate GBV through programming that includes awareness campaigns, online mobilisation, training, and webinars.

Becoming part of the solution

“Become change agents,” Dr Nchabeleng urges. One way to start shifting attitudes and mindsets is to change the way we speak. Examples would be to refrain from sexist and discriminatory language and phrases that undermine and degrade our women. Gendered name-calling generally depicts women and girls as inferior and less than fully human. Another area of concern is the way young people — especially young men — engage in disparaging conversations about women on social media platforms. This behaviour needs to cease. As a society, we also need to stop victim blaming, stop normalising rape culture, and stop entertaining sexual violence jokes,” Dr Nchabeleng says.

These changes start with each of us.

Incidents of GBV and discrimination can be reported to GEADO at:
Bloemfontein Campus: +27 51 401 3982
South Campus: +27 51 401 7544
Qwaqwa Campus: +27 58 718 5431

Sexual Assault Response Team (SART):
www.ufs.ac.za/sart 
Toll-free number +27 80 020 4682

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept