Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2021 | Story Michelle Nothling | Photo Supplied
Lentsu Nchabeleng
Dr Ntheno Nchabeleng was appointed as the Deputy Director in the Gender and Anti-Discrimination Office within the Unit for Institutional Change and Social Justice.

A total of 10 006 rape cases were reported between April and June 2021. This is according to the latest SA crime statistics for the first quarter of 2021/2022. From a sample of 5 439 of these rape cases, 3 766 of incidents took place in the victim’s home or that of the rapist. A shadow pandemic of gender-based violence against our women and children is raging in South Africa.

It is within this global and local context that the Gender and Anti-Discrimination Office (GEADO) at the university is making inroads into supporting survivors of gender-based violence (GBV) and changing gender stereotypes.

GEADO in focus

GEADO is situated within the Unit for Institutional Change and Social Justice on the Bloemfontein Campus. It is mandated to deal with incidents of unfair discrimination and GBV as it relates to the UFS community, and to conduct advocacy and training in these areas. Deputy Director of GEADO, Dr Ntheno Nchabeleng, explains that “through high-impact practices and interventions, the Office works to systematically reduce case attrition to ensure that all reports and cases follow procedurally just processes”.

GEADO has been established at all the UFS campuses with well-trained and fully equipped Senior Gender Officers leading each. Geraldine Langau—supported by research assistant Delisile Mngadi—is managing the office at the Bloemfontein Campus, Chelepe Mocwana the Qwaqwa Campus, and Sivuyisiwe Magayana oversees the South Campus office.

Addressing gender-based violence

Prevention and response to GBV are at the core of GEADO’s work. With our country wracked by sexual violence and femicide, “it has become a nightmare to be a woman in South Africa”, Dr Nchabeleng says.

Its preventative efforts focus on the underlying causes of GBV to transform patriarchal notions, misogynistic norms, power imbalances, and toxic gender stereotypes. Fostering collaboration with various strategic partners to strengthen its impact, GEADO recently started working with Amnesty International Sub-Saharan Africa and Amnesty International Latin America to spread awareness on various forms of violence experienced by vulnerable populations. GEADO has also partnered with other local stakeholders in an effort to eradicate GBV through programming that includes awareness campaigns, online mobilisation, training, and webinars.

Becoming part of the solution

“Become change agents,” Dr Nchabeleng urges. One way to start shifting attitudes and mindsets is to change the way we speak. Examples would be to refrain from sexist and discriminatory language and phrases that undermine and degrade our women. Gendered name-calling generally depicts women and girls as inferior and less than fully human. Another area of concern is the way young people — especially young men — engage in disparaging conversations about women on social media platforms. This behaviour needs to cease. As a society, we also need to stop victim blaming, stop normalising rape culture, and stop entertaining sexual violence jokes,” Dr Nchabeleng says.

These changes start with each of us.

Incidents of GBV and discrimination can be reported to GEADO at:
Bloemfontein Campus: +27 51 401 3982
South Campus: +27 51 401 7544
Qwaqwa Campus: +27 58 718 5431

Sexual Assault Response Team (SART):
www.ufs.ac.za/sart 
Toll-free number +27 80 020 4682

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept