Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2021 | Story Andre Damons | Photo Pixabay
Two final-year MBChB students show how it is done when they donated blood earlier this year.

Bachelor of Medicine and Bachelor of Surgery (MBChB) staff and students in the Faculty of Health Sciences have challenged other departments in the faculty as well as other faculties and departments at the University of the Free State (UFS) to see whose staff and students will donate the most blood!

Mrs Angela Vorster, UFS Clinical Psychologist, says the South African National Blood Services (SANBS) has been appealing for increased blood donations since the onset of the COVID-19 pandemic last year. In order to provide support, the School of Clinical Medicine at the UFS held a virtual blood donation challenge in 2020, to encourage students to participate in altruistic behaviour and to enable the pre-clinical platform year groups to also feel like they are providing essential medical assistance.

“This was hugely successful and consequently we decided to include a blood donation challenge in our annual Mental Health Awareness programme. The benefits of donating blood are not only of a physiological nature (e.g. it assists in reducing iron levels and helps to control high blood pressure etc.) but means you are giving something of yourself. It will definitely save at least one life, perhaps more, and is incredibly beneficial in enhancing feelings of self-worth and personal meaning,” says Vorster.

The Faculty of Health Sciences invited the SANBS to UFS this week to provide all students and staff with the opportunity to donate blood at their place of work and study. So Have a Heart and take a few minutes to relax with a cookie and cool drink while your heart does the work of blood donation for you.

Details are as follows:

When: 18 and 19 February

Where: Francois Retief Foyer UFS

Time: 07:00-14:30

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept