Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2021 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Lizette de Wet
Prof Lizette de Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics.

“I consider obtaining my PhD while balancing my work, my marriage, and two young daughters (who did not sleep through before reaching age four!) as one of my biggest achievements,” says Prof Lizette de Wet, Associate Professor in the Department of Computer Science and Informatics at the University of the Free State (UFS).

Many firsts

Her achievements in the field include much more than the PhD referred to. On 11 February, International Day of Women and Girls in Science, the UFS celebrates her for pioneering the human-computer interaction (HCI) research environment, specifically the evaluation of usability and user experience in diverse application areas, where she has experienced and established many firsts.

Prof De Wet was one of the first students to complete a master’s degree in this discipline at UNISA (1994). She says the external examiner for her master’s was from the University of York in the UK, as expertise in South Africa was still lacking at the time.

In the Department of Computer Science and Informatics at the UFS, she established the HCI research area. This involved undertaking research projects in the discipline and developing curricula for a second-year module, an honours module, and a master’s module. 

“The second-year module was also one of two modules on campus to first use iPads in class to assist in a blended learning approach,” she says. 

 

Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.– Prof Lizette de Wet


A woman’s contribution

Prof De Wet believes that in the research field of HCI, the focus is on the user and his/her overall user experience (including emotions, feelings, and competence) when using computers. “Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.”

Whether the human being writing the code is male or female, does not matter. Prof De Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics. 

“Although the students are still predominantly male, in the past few years more and more female students have enrolled for our postgraduate studies and completed it successfully, some of them with exceptional marks. In South-Africa, many women are making their mark in this discipline by being heads of departments at universities or in the private sector, by chairing national and international conferences, and by publishing ground-breaking research,” she adds.

Success with virtual reality

Over the past few years, Prof De Wet has concentrated on using brain-computer interfaces (BCIs) and virtual reality in her research. By the end of 2020, she had successfully supervised 11 master’s students and four PhD students, with one of the master’s students delivering ground-breaking research using virtual reality in the training of nursing students.

She elaborates: “The prototype involved virtually examining and evaluating a patient (with a foreign object lodged in a lung) in a virtual ward while wearing an Oculus Rift headset. The evaluation results were extremely positive and will be continued as a PhD study to investigate how to attempt to relieve motion sickness in an immersive virtual clinical simulation.”

Starting out as someone who never had the opportunity to lay her eyes on a computer during her school years, Prof De Wet is of the opinion that in South Africa – being a Third World country – there are numerous opportunities to make computers accessible to rural communities, and even to the large senior population who did not grow up with technology and might fear it.

With her passion for the profession, she not only delivers pioneering work, but also trains professionals in computer sciences who will contribute to a better tomorrow. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept