Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2021 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Lizette de Wet
Prof Lizette de Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics.

“I consider obtaining my PhD while balancing my work, my marriage, and two young daughters (who did not sleep through before reaching age four!) as one of my biggest achievements,” says Prof Lizette de Wet, Associate Professor in the Department of Computer Science and Informatics at the University of the Free State (UFS).

Many firsts

Her achievements in the field include much more than the PhD referred to. On 11 February, International Day of Women and Girls in Science, the UFS celebrates her for pioneering the human-computer interaction (HCI) research environment, specifically the evaluation of usability and user experience in diverse application areas, where she has experienced and established many firsts.

Prof De Wet was one of the first students to complete a master’s degree in this discipline at UNISA (1994). She says the external examiner for her master’s was from the University of York in the UK, as expertise in South Africa was still lacking at the time.

In the Department of Computer Science and Informatics at the UFS, she established the HCI research area. This involved undertaking research projects in the discipline and developing curricula for a second-year module, an honours module, and a master’s module. 

“The second-year module was also one of two modules on campus to first use iPads in class to assist in a blended learning approach,” she says. 

 

Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.– Prof Lizette de Wet


A woman’s contribution

Prof De Wet believes that in the research field of HCI, the focus is on the user and his/her overall user experience (including emotions, feelings, and competence) when using computers. “Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.”

Whether the human being writing the code is male or female, does not matter. Prof De Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics. 

“Although the students are still predominantly male, in the past few years more and more female students have enrolled for our postgraduate studies and completed it successfully, some of them with exceptional marks. In South-Africa, many women are making their mark in this discipline by being heads of departments at universities or in the private sector, by chairing national and international conferences, and by publishing ground-breaking research,” she adds.

Success with virtual reality

Over the past few years, Prof De Wet has concentrated on using brain-computer interfaces (BCIs) and virtual reality in her research. By the end of 2020, she had successfully supervised 11 master’s students and four PhD students, with one of the master’s students delivering ground-breaking research using virtual reality in the training of nursing students.

She elaborates: “The prototype involved virtually examining and evaluating a patient (with a foreign object lodged in a lung) in a virtual ward while wearing an Oculus Rift headset. The evaluation results were extremely positive and will be continued as a PhD study to investigate how to attempt to relieve motion sickness in an immersive virtual clinical simulation.”

Starting out as someone who never had the opportunity to lay her eyes on a computer during her school years, Prof De Wet is of the opinion that in South Africa – being a Third World country – there are numerous opportunities to make computers accessible to rural communities, and even to the large senior population who did not grow up with technology and might fear it.

With her passion for the profession, she not only delivers pioneering work, but also trains professionals in computer sciences who will contribute to a better tomorrow. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept