Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2021 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Lizette de Wet
Prof Lizette de Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics.

“I consider obtaining my PhD while balancing my work, my marriage, and two young daughters (who did not sleep through before reaching age four!) as one of my biggest achievements,” says Prof Lizette de Wet, Associate Professor in the Department of Computer Science and Informatics at the University of the Free State (UFS).

Many firsts

Her achievements in the field include much more than the PhD referred to. On 11 February, International Day of Women and Girls in Science, the UFS celebrates her for pioneering the human-computer interaction (HCI) research environment, specifically the evaluation of usability and user experience in diverse application areas, where she has experienced and established many firsts.

Prof De Wet was one of the first students to complete a master’s degree in this discipline at UNISA (1994). She says the external examiner for her master’s was from the University of York in the UK, as expertise in South Africa was still lacking at the time.

In the Department of Computer Science and Informatics at the UFS, she established the HCI research area. This involved undertaking research projects in the discipline and developing curricula for a second-year module, an honours module, and a master’s module. 

“The second-year module was also one of two modules on campus to first use iPads in class to assist in a blended learning approach,” she says. 

 

Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.– Prof Lizette de Wet


A woman’s contribution

Prof De Wet believes that in the research field of HCI, the focus is on the user and his/her overall user experience (including emotions, feelings, and competence) when using computers. “Taking the human being into consideration is much more important than simply concentrating on the programming code that needs to be written.”

Whether the human being writing the code is male or female, does not matter. Prof De Wet is of the opinion that there is no gender distinction between what women and men could achieve in the field of Computer Science and Informatics. 

“Although the students are still predominantly male, in the past few years more and more female students have enrolled for our postgraduate studies and completed it successfully, some of them with exceptional marks. In South-Africa, many women are making their mark in this discipline by being heads of departments at universities or in the private sector, by chairing national and international conferences, and by publishing ground-breaking research,” she adds.

Success with virtual reality

Over the past few years, Prof De Wet has concentrated on using brain-computer interfaces (BCIs) and virtual reality in her research. By the end of 2020, she had successfully supervised 11 master’s students and four PhD students, with one of the master’s students delivering ground-breaking research using virtual reality in the training of nursing students.

She elaborates: “The prototype involved virtually examining and evaluating a patient (with a foreign object lodged in a lung) in a virtual ward while wearing an Oculus Rift headset. The evaluation results were extremely positive and will be continued as a PhD study to investigate how to attempt to relieve motion sickness in an immersive virtual clinical simulation.”

Starting out as someone who never had the opportunity to lay her eyes on a computer during her school years, Prof De Wet is of the opinion that in South Africa – being a Third World country – there are numerous opportunities to make computers accessible to rural communities, and even to the large senior population who did not grow up with technology and might fear it.

With her passion for the profession, she not only delivers pioneering work, but also trains professionals in computer sciences who will contribute to a better tomorrow. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept