Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 February 2021 | Story André Damons | Photo Charl Devenish
Prof Mamello Sekhoacha, Associate Professor from the Department of Pharmacology in the Faculty of Health Sciences, was appointed by Dr Zweli Mkhize, Minister of Health, as the new chairperson of the National Health Research Ethics Council of South Africa (NHREC).

A researcher in the field of drug discovery and development at the University of the Free State (UFS) has been appointed by Dr Zweli Mkhize, Minister of Health, as the new chairperson of the National Health Research Ethics Council of South Africa (NHREC).

Prof Mamello Sekhoacha, Associate Professor from the Department of Pharmacology in the Faculty of Health Sciences, was appointed as a member of the NHREC council in 2013, and later became the chairperson of the NHREC’s Norms and Standards Committee responsible for developing and revising guidelines for health research. Prof Sekhoacha was appointed deputy chairperson of the council in 2018 and has played an integral part in setting ethical standards for conducting health research in the country.

 Responsibilities of the NHREC

The NHREC is the national statutory body responsible for the governance and advancement of health research ethics in South Africa. Some of the responsibilities of the council are to set ethical norms and standards for health research by developing and revising the guidelines pertaining to health research; to promote and monitor compliance with existing regulations by health research ethics committees; and to build capacity in research ethics committees through robust registration and audit processes.

These responsibilities of the NHREC rest on the need to ensure ethical integrity in research involving human participants and animal subjects, and that research is based on sound scientific and ethical principles.

“It is an honour for me to serve on the NHREC for the third term. The NHREC has achieved remarkable outputs over the past three years, and I believe, given the current composition of the council members, this momentum will not be lost. One of the goals of the NHREC is to further broaden the scope of the ethics in health research guidelines from ‘biomedical research’ to ‘health-related research’ to ensure that adequate guidance is provided for those in health-related disciplines, as a response to the changing environment of research involving humans and the broader meaning of health research.” 

“We need more comprehensive guidelines with nuanced commentaries to indicate how the ethical principles that emanated from biomedical research involving humans, could be effectively implemented in other disciplines of health-related research,” says Prof Sekhoacha. 

Global paradigm shift in role and integration of ethics in health research

Having been a council member since 2013, Prof Sekhoacha, whose training spans from pre-clinical laboratory experimentation, the use of animals in research, clinical trials, and working with indigenous communities, says there is a global paradigm shift in the role and integration of ethics in health research in almost all aspects of research, with an increased emphasis on the scientific and social value of research: the prospect of generating the knowledge in a manner that protects and promotes people's health. Considerations of the NHREC go beyond developing ethical guidelines or ensuring the efficient functioning of the ethics committees, to raising awareness among research institutions and researchers to continually promote ethically sound research conduct. 

The subject of ethics in health research is pivotal and reflective of the values of both the institution and the country at large. 

UFS uses Prof Sekhoacha’s expertise on ethics

Prof Sekhoacha is also a co-opted advisory member in the Senate Research Ethics Committee of the UFS and facilitates workshops and seminars on research ethics offered by the Postgraduate School.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says it is a great honour for the UFS that Prof Sekhoacha has been elected chair of the NHREC.  “The NHREC governs the research ethics processes in South Africa, and it is strategically important for the UFS to now have one of our own academics play such a nationally important role.  We have been using Prof Sekhoacha’s expertise on issues of ethics and we are looking forward to working with her to continue to better our own ethics processes.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept