Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 February 2021 | Story ANDRE DAMONS | Photo Supplied
Prof Maxim Finkelstein, distinguished Professor at the Department of Mathematical Statistics and Actuarial Science at the UFS has become the only researcher with an A1-rating in South Africa (awarded by NRF) in Probability, Statistics and Operations Research.

A professor in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has become the only researcher with an A1-rating in Probability, Statistics and Operations Research in South Africa after being awarded this prestigious rating by the National Research Foundation (NRF).

This is the second time Prof Maxim Finkelstein, the distinguished Professor at the Department of Mathematical Statistics and Actuarial Science in the Faculty of Natural and Agricultural Sciences, has been awarded with an A-rating. The first was in 2015.

The goal is to produce quality research

According to Prof Finkelstein, the rating should not be a goal as such for a researcher but should produce a quality research that is recognised by peers and that, above all, brings a real satisfaction in life. Prof Finkelstein says: “The rating is just a consequence of what one, as a researcher, has achieved in the past eight years and, actually, during the whole professional life as well. South Africa is the only country in the world that is able to perform this rigorous internationally sound rating process for individual researchers. ‘Scientifically large’ countries just cannot do it, technically.”

Prof Finkelstein’s area of expertise is the modelling of random events and quantifying probabilities of their occurrences. He explains: “For instance, in industry, people are interested in probabilities that a machine or process or mission will accomplish its task without failure or accident. In order to assess the probabilities of interest, one must have an adequate mathematical/stochastic model that should be properly developed. 

“Thus, I am developing such models that can be rather advanced because they should take into account numerous factors, e.g., that the object is operating in a random environment, that its structure could change, that there can be human errors affecting the outcome, that an object interacts with other objects, etc. This is usually done in the framework of mathematical reliability theory that considers operation of technical devices.” 

The only A-rating at NAS

“I am quite excited to get the A-rating for the second time, especially because it is the only A-rating in Probability, Statistics and Operations Research in South Africa. It is also the only A-rating at our Faculty of Natural and Agricultural Sciences.

“The fact that it is an A1 and not A2, as previously, does not, in fact, mean too much to me. What matters really is that it is the A-category defined by the reviewers’ opinions that the applicant is a world leader in his discipline,” says Prof Finkelstein.

During his numerous visits as a research professor to the Max Planck Institute of Demographic Research in Germany, he jointly with the colleagues from this institute, were applying the developed stochastic approaches to modelling lifespans of organisms as well. 

One of Prof Finkelstein’s evolving interests is in the area of healthcare engineering when, for instance, monitoring the key health parameters of a patient, some optimal cost-wise decisions can be made on preventive treatments and interventions. 

“I want also to stress that, in general, international collaboration is very important for emerging and established researchers, especially in ‘remote’ South Africa, although nowadays the term ‘remote’ is obviously outdated,” says Prof Finkelstein.

He also collaborates with numerous colleagues around the globe. Apart from the visiting position in the Max Planck Institute he held for many years, Prof Finkelstein regularly visits the ITMO University in St Petersburg, Russia, and is also now establishing a Visiting Professor position at the University of Strathclyde in Glasgow, Scotland.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept