Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 February 2021 | Story ANDRE DAMONS | Photo Supplied
Prof Maxim Finkelstein, distinguished Professor at the Department of Mathematical Statistics and Actuarial Science at the UFS has become the only researcher with an A1-rating in South Africa (awarded by NRF) in Probability, Statistics and Operations Research.

A professor in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has become the only researcher with an A1-rating in Probability, Statistics and Operations Research in South Africa after being awarded this prestigious rating by the National Research Foundation (NRF).

This is the second time Prof Maxim Finkelstein, the distinguished Professor at the Department of Mathematical Statistics and Actuarial Science in the Faculty of Natural and Agricultural Sciences, has been awarded with an A-rating. The first was in 2015.

The goal is to produce quality research

According to Prof Finkelstein, the rating should not be a goal as such for a researcher but should produce a quality research that is recognised by peers and that, above all, brings a real satisfaction in life. Prof Finkelstein says: “The rating is just a consequence of what one, as a researcher, has achieved in the past eight years and, actually, during the whole professional life as well. South Africa is the only country in the world that is able to perform this rigorous internationally sound rating process for individual researchers. ‘Scientifically large’ countries just cannot do it, technically.”

Prof Finkelstein’s area of expertise is the modelling of random events and quantifying probabilities of their occurrences. He explains: “For instance, in industry, people are interested in probabilities that a machine or process or mission will accomplish its task without failure or accident. In order to assess the probabilities of interest, one must have an adequate mathematical/stochastic model that should be properly developed. 

“Thus, I am developing such models that can be rather advanced because they should take into account numerous factors, e.g., that the object is operating in a random environment, that its structure could change, that there can be human errors affecting the outcome, that an object interacts with other objects, etc. This is usually done in the framework of mathematical reliability theory that considers operation of technical devices.” 

The only A-rating at NAS

“I am quite excited to get the A-rating for the second time, especially because it is the only A-rating in Probability, Statistics and Operations Research in South Africa. It is also the only A-rating at our Faculty of Natural and Agricultural Sciences.

“The fact that it is an A1 and not A2, as previously, does not, in fact, mean too much to me. What matters really is that it is the A-category defined by the reviewers’ opinions that the applicant is a world leader in his discipline,” says Prof Finkelstein.

During his numerous visits as a research professor to the Max Planck Institute of Demographic Research in Germany, he jointly with the colleagues from this institute, were applying the developed stochastic approaches to modelling lifespans of organisms as well. 

One of Prof Finkelstein’s evolving interests is in the area of healthcare engineering when, for instance, monitoring the key health parameters of a patient, some optimal cost-wise decisions can be made on preventive treatments and interventions. 

“I want also to stress that, in general, international collaboration is very important for emerging and established researchers, especially in ‘remote’ South Africa, although nowadays the term ‘remote’ is obviously outdated,” says Prof Finkelstein.

He also collaborates with numerous colleagues around the globe. Apart from the visiting position in the Max Planck Institute he held for many years, Prof Finkelstein regularly visits the ITMO University in St Petersburg, Russia, and is also now establishing a Visiting Professor position at the University of Strathclyde in Glasgow, Scotland.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept