Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 February 2021 | Story ANDRE DAMONS | Photo Supplied
Prof Maxim Finkelstein, distinguished Professor at the Department of Mathematical Statistics and Actuarial Science at the UFS has become the only researcher with an A1-rating in South Africa (awarded by NRF) in Probability, Statistics and Operations Research.

A professor in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has become the only researcher with an A1-rating in Probability, Statistics and Operations Research in South Africa after being awarded this prestigious rating by the National Research Foundation (NRF).

This is the second time Prof Maxim Finkelstein, the distinguished Professor at the Department of Mathematical Statistics and Actuarial Science in the Faculty of Natural and Agricultural Sciences, has been awarded with an A-rating. The first was in 2015.

The goal is to produce quality research

According to Prof Finkelstein, the rating should not be a goal as such for a researcher but should produce a quality research that is recognised by peers and that, above all, brings a real satisfaction in life. Prof Finkelstein says: “The rating is just a consequence of what one, as a researcher, has achieved in the past eight years and, actually, during the whole professional life as well. South Africa is the only country in the world that is able to perform this rigorous internationally sound rating process for individual researchers. ‘Scientifically large’ countries just cannot do it, technically.”

Prof Finkelstein’s area of expertise is the modelling of random events and quantifying probabilities of their occurrences. He explains: “For instance, in industry, people are interested in probabilities that a machine or process or mission will accomplish its task without failure or accident. In order to assess the probabilities of interest, one must have an adequate mathematical/stochastic model that should be properly developed. 

“Thus, I am developing such models that can be rather advanced because they should take into account numerous factors, e.g., that the object is operating in a random environment, that its structure could change, that there can be human errors affecting the outcome, that an object interacts with other objects, etc. This is usually done in the framework of mathematical reliability theory that considers operation of technical devices.” 

The only A-rating at NAS

“I am quite excited to get the A-rating for the second time, especially because it is the only A-rating in Probability, Statistics and Operations Research in South Africa. It is also the only A-rating at our Faculty of Natural and Agricultural Sciences.

“The fact that it is an A1 and not A2, as previously, does not, in fact, mean too much to me. What matters really is that it is the A-category defined by the reviewers’ opinions that the applicant is a world leader in his discipline,” says Prof Finkelstein.

During his numerous visits as a research professor to the Max Planck Institute of Demographic Research in Germany, he jointly with the colleagues from this institute, were applying the developed stochastic approaches to modelling lifespans of organisms as well. 

One of Prof Finkelstein’s evolving interests is in the area of healthcare engineering when, for instance, monitoring the key health parameters of a patient, some optimal cost-wise decisions can be made on preventive treatments and interventions. 

“I want also to stress that, in general, international collaboration is very important for emerging and established researchers, especially in ‘remote’ South Africa, although nowadays the term ‘remote’ is obviously outdated,” says Prof Finkelstein.

He also collaborates with numerous colleagues around the globe. Apart from the visiting position in the Max Planck Institute he held for many years, Prof Finkelstein regularly visits the ITMO University in St Petersburg, Russia, and is also now establishing a Visiting Professor position at the University of Strathclyde in Glasgow, Scotland.

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept