Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2021 | Story Thabo Kessah | Photo Thabo Kessah
Prof Rodwell Makombe’s literary research focuses on a Facebook page that ‘reconstructs home away from home’.

Home is a complex concept, as it is not a physical place. This is according to Prof Rodwell Makombe’s recently published research article titled, Online images and imaginings of home: The case of Qwaqwa Thaba Di Mahlwa Facebook page

“The article looks at how migrants from Qwaqwa, now living in Johannesburg, Durban, Cape Town and elsewhere, imagine Qwaqwa as home. Because they spend a lot of time away from home, they always have a longing and a sense of loneliness, as they live in places that are not home. They also have to find ways of reminiscing about their homeland. This study is about how they reconstruct home away from home. There are two approaches towards the idea of home. Firstly, home can be conceptualised as a familiar place and a place of origin that offers stability. Secondly, home is within them and they carry it with them wherever they go,” said Prof Makombe. 

‘Qwaqwa Thaba Di Mahlwa’  

The study focused on a Facebook page created by Qwaqwa migrants, called ‘Qwaqwa thaba Di Mahlwa’. “We looked at the images that were posted on this page and how they seek to construct Qwaqwa as a home. When a person posts a picture from Qwaqwa, everyone from Qwaqwa associates with the picture and are reminded of certain things from home. Migrants make homes out of this Facebook page and the page becomes a place where all can rally together and construct their home,” he added. 

The study is part of a broader book project titled Visual Cultures of the Afromontane, funded by the Afromontane Research Unit. 

Prof Makombe is an Associate Professor in the Department of English on the Qwaqwa Campus. His areas of research include cultural studies, postcolonial literatures, and cultures of resistance. The article was co-written with Dr Oliver Nyambi.  

 

 

LISTEN: Prof Rodwell Makombe on Qwaqwa migrants and their connection to home

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept