Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 February 2021 | Story NONSINDISO QWABE | Photo Supplied
Business Management Lecturer, Lebohang Masoabi, who received her MA in Business Management at the February virtual graduation ceremony.

Student-turned-lecturer at the University of Free State (UFS), Lebohang Masoabi, has experienced the best of both worlds. Masoabi, a Business Management Lecturer on the Qwaqwa Campus, received her MA degree with specialisation in Business Management during the ceremony for master’s and doctoral degrees on 24 February 2021. 
She obtained both her BA Corporate Marketing and Communication and BAHons in Business Management degrees from the UFS.

I found my passion and remembered why I started

Masoabi knows a little about delays not being denials, because what was initially supposed to be a two-year qualification took her five years to complete. “It’s been a long journey, and I really have been through a lot to get to this point. Along the way, I lost hope and was ready to give up, but I remembered why I started. Being an academic has always been a dream of mine, and I want to be the best at that, so I remembered that this was my dream, something that I love.”
“Passing on the knowledge that I have learned from this very university is incredible. I think we are one of the most awesome institutions, and I say this with confidence – having been a student myself, and now as an employee of this institution. At one point I was on the receiving end and knowledge was transferred to me, and now I am on the other side transferring that very same knowledge. Now that I am here, I want more. I see myself becoming Professor Lebohang Masoabi one day,” she said.

Entrepreneurship education necessary for students 
Masoabi’s study focused on the role of entrepreneurship education on the attitudes and intentions of university students. She said when she came up with the topic of the study, one of her concerns was that many students studying entrepreneurship did not know what to do with their degrees beyond university, while students in other streams who went on to start businesses after getting their qualifications, lacked the skill and know-how. Her study found that entrepreneurship education had a positive influence on the intentions of students who had entrepreneurship background.

“Entrepreneurship teaches you to cultivate unique skills and to think out of the box. It creates opportunities, which is necessary in a country like ours. If students are given the skills and background of entrepreneurship – with the right opportunities and confidence they get from us as lecturers – they are able to influence their surroundings,” she said.

Master’s degree a message of hope

Masoabi is currently pursuing her PhD in social entrepreneurship, and said her focus was on becoming an expert in the field. “Part of why I started this journey was because of the hope that was given to me as a student at the UFS, the hope that I can be whatever I want to be. This master’s degree is my message of hope to someone looking at my life.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept