Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 February 2021 | Story Xolisa Mnukwa

The University of the Free State (UFS) invites you to the 2021 Virtual Graduation, where students who completed their qualifications in June/July of 2020 will receive their qualifications during the ceremonies taking place from 22 to 24 February 2021.

Bachelor degrees (435), higher certificates (86), advanced certificates (230), postgraduate certificates (4), national professional diplomas (203), advanced diplomas (13), postgraduate diplomas (158), bachelors honours degrees (22), master’s (201), and doctoral qualifications (70) will be awarded to students across the UFS Bloemfontein and Qwaqwa Campuses. 

Graduates in the faculties of Economic and Management Sciences, Education, Health Sciences, the Humanities, Law, Natural and Agricultural Sciences, and Theology and Religion will be honoured during the upcoming ceremonies for their academic excellence.

Graduation is the highlight on the university calendar, and even though this prestigious occasion will not be taking place traditionally, the UFS would still like to acknowledge and commemorate our graduates’ prestigious accomplishments. 

The COVID-19 pandemic has caused immense disruption in many aspects of our lives. Higher education institutions throughout the world were not exempt from the effects of the deadly virus. This has subsequently impacted the presentation of graduation ceremonies throughout the sector.
The UFS looks forward to virtually celebrating the milestones of all graduates at the virtual graduation ceremonies, and thus implores all graduates to join us in doing so. 

See information further below for details on how to join in on the celebrations.

The university hopes to celebrate many more graduations in future, but for now, the health and safety of our community is our primary concern.
              
  #UFSGraduation2021  #UFSVirtualGraduation 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept