Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2021 | Story Prof Felicity Burt, Prof Dominique Goedhals & Dr Sabeehah Vawda | Photo istock

Opinion article by Prof Felicity Burt, Prof Dominique Goedhals, and Dr Sabeehah Vawda, Division of Virology, Faculty of Health Sciences, University of the Free State and National Health Laboratory Service, Bloemfontein. 

As we optimistically embarked on a new year with hopes of seeing an end to the global pandemic, masks, and social restrictions, our news channels were consumed with stories about virus variants and vaccine roll-out. What do these variants mean and will the vaccines protect against the changes that have emerged in the virus and save us from the new normal?

The news of a ‘mutated’ virus most likely conjures movie-like images of an invisible, indestructible enemy causing massive disruption. The reality is fortunately much less dramatic, as these changes are actually expected. Just to reiterate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an RNA genome that codes for all the proteins which the virus produces. The exact details of how the virus replicates and produces new progeny, although of interest, are beyond the scope of this article. It is sufficient at this point to merely acknowledge that, during replication, the mechanism employed by viruses with an RNA genome allows for the introduction of mutations in the genes that code for the viral proteins. This is expected to occur and there is substantial evidence that the SARS-CoV-2 viral genes have evolved and adapted globally. Some mutations are silent, in other words, they do not change the viral proteins. However, in some instances the changes can affect the proteins encoded by the virus. If these changes occur in regions of the protein responsible for binding to the cell receptors that facilitate entry of the virus into the cell, or in regions of the protein that induce an immune response, the virus may show new characteristics, such as more successful transmission or escape from an existing immune response. 

Second wave of infections

South Africa and the United Kingdom are probably the two countries globally that have methodically sequenced the largest number of SARS-CoV-2 viruses isolated from patients. This technique allows the determination of the complete genome of each isolate and subsequent comparison, using bioinformatic software specifically designed to compare and identify changes and mutations in the nucleotide sequences. As we are all now aware, scientists in these two countries have identified virus variants with an accumulation of mutations and deletions occurring in the gene that encodes for the viral spike protein associated with binding to cell receptors and inducing protective immune responses. These variants have now become the predominant lineages circulating within local communities. 

In December 2020, scientists in South Africa revealed the presence of a variant of concern (VOC), now referred to as 501Y.V2. Sequence data confirmed that this variant initially emerged in October 2020, and by January 2021 it was present in multiple provinces in the country and is considered to be responsible for a significant number of cases occurring in the second wave of infections in the country. A second VOC reported by scientists in the United Kingdom in December 2020, (202012/01) likely emerged during September 2020. A third VOC has been reported from Brazil and is simply known as variant P1. To date, variant 501Y.V2 has been reported from at least 23 countries. VOC 202012/01 has been reported in at least 60 countries, and although the cases were initially associated with travellers, there is an increasing number of clusters of cases occurring in people with no history of travel. The United States, Israel, and India currently have the highest number of cases associated with this variant outside of the UK, keeping in mind that at the rate at which the pandemic unfolds, these statistics quickly become outdated. In contrast, variant P1 has only been reported from Brazil, and outside of Brazil it has been associated with travellers in a small number of countries. 

Immune responses

Changes in viral proteins may or may not influence certain characteristics of a viral infection. Current epidemiological data and modelling have all suggested that the VOC circulating in South Africa and the UK are more transmissible than previous lineages of the SARS-CoV-2. Despite the increased transmissibility, to date the severity of illness and the proportion of severe disease in different age groups appear to be unaffected by the changes in the protein. The increased transmissibility has increased the burden on the public and private health systems, emphasising the importance of rolling out a vaccine to healthcare workers and persons at increased risk of severe illness. 

The changes in the spike protein responsible for inducing immune responses have sparked research studies to determine whether the vaccines will be able to protect against the new variants.  It must be remembered that there are two arms to the immune response with complex interactions, and that natural protection will likely be a combination of responses. However, the presence of antibodies that neutralise the virus, in other words, block it from entering cells, and the ability of these neutralising antibodies to block new variants from entering the cells, can be investigated in the laboratory. Although the exact responses required for protection are not fully understood and will require studies that take more time to complete, an indication of neutralising capacity provides some information with regard to the potential efficacy of the vaccine against variants. What we currently know from laboratory research is that there is a reduction in the ability of antibody from people previously infected during the first wave of cases to neutralise the new variant circulating in South Africa. This reduction varied among the cohort of samples tested, but overall, there was a weaker neutralising capability. Similar results were demonstrated using pseudoviruses representing the variant virus. Studies looking at antibodies in people who have been vaccinated show similar reductions in neutralisation. The answer is unfortunately not clear at this stage, with many pieces of the puzzle still to be determined. The reduced capacity to neutralise in a laboratory was not what we wanted to hear, but it must be remembered that vaccines induce a broad immune response and not only neutralise antibody, and hence there are other components to the immune response that will likely contribute to protection. Nonetheless, even a reduced immune response will contribute towards vaccine-induced herd immunity and saving lives by preventing severe disease. 

Vaccine trials

In addition to the vaccines currently in use, results were released from clinical trials using vaccines from Novavax and Johnson & Johnson. Although a lower efficacy was shown among the South African population compared to results obtained in the UK, the efficacy was still in the region of 57% to 60%, which is certainly encouraging in view of the new variant circulating. The differences observed illustrate the importance of conducting vaccine trials in local populations. An efficacy of 60% will still contribute towards herd immunity and the prevention of severe disease, emphasising the importance of a rapid roll-out and hopefully a high uptake of the vaccine. Vaccination will not only protect the vaccinee but should contribute to minimising the risk of further variants emerging. 

The roll-out of vaccine, further research on immune responses in vaccinated communities, epidemiological data, and sequence data will all contribute towards monitoring the evolution of the outbreak. Flu vaccines are modified annually and if the COVID-19 vaccine needs to be modified, manufacturers have the capability to do this, and some have already started this process. 

Additional waves of infection are predicted to occur until herd immunity can be achieved. Whether the current variants will be responsible for the next wave is not possible to predict, and continued research analysing the gene sequences of future isolates will play an important role in determining how the virus is evolving. 

In the interim, until we have sufficient vaccine-induced herd immunity to provide protection, non-pharmaceutical interventions and human behaviour will continue to play the important role of minimising new infections. To quote CS Lewis: “You can’t go back and change the beginning, but you can start where you are and change the ending.”

 

News Archive

Wildlife researcher in ground-breaking global research on giraffes
2017-10-20

Description: Giraffe read more Tags: giraffe, conservation, Dr Francois Deacon, Last of the Long Necks, Catching Giants 

Dr Deacon from the Department of Animal, Wildlife and Grassland
Sciences at the University of the Free State (UFS),
lead a multispecialist research group to catch
and collar giraffe to collect data that will
contribute to the conservation of these animals.
Photo: Prof Nico Smith


Capturing 51 giraffes without any injuries or mortalities to collect data that will contribute to the conservation of these animals is not for everyone. Capturing a giraffe with minimum risk to the animal and the people involved, requires extraordinary skill, planning, and teamwork. “This exercise is a dangerous task, since a well-placed kick from these large and extremely powerful animals can cause serious injuries. Early in October was the first time that giraffes were captured on such a large scale,” said wildlife researcher Dr Francois Deacon.
 
Dr Deacon from the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), led a multispecialist research group of over 30 people from 10 different countries to collect information about these little-known animals.

UFS first to collar giraffe
Taking a global approach, the team responsible for this intricate process consisted of wildlife biologists, conservationists, interdisciplinary scientists and five specialist veterinarians who are experienced in catching and working with wild animals. Specialised drugs sponsored by Dr Kobus Raath from Wildlife Pharmaceuticals, tested for the first time and administered with a dart gun were used to tranquillise the giraffe, which then allowed for the GPS collars to be fitted.  These collars, sponsored by Africa Wildlife Tracking, enable the researchers to record the location of individual giraffe for up to two years, give 24/7 readings, irrespective of weather conditions. In this cost-effective manner, data can be gathered on climatic factors, giraffe communication, social behaviour, home ranges, seasonal movements, human and giraffe interaction zones, as well as migration routes and the duration of the migration process. The collars will effectively be used to locate individuals to collect faecal samples for hormonal cycles, stress hormones, nutrient deficiencies based on diet and also internal parasites. 

“This knowledge we gain is the key to all keys in saving this iconic animal from becoming extinct,” said Dr Deacon.

Six years ago, during a pilot study, Dr Deacon was the first researcher to fit giraffes with a GPS collar. Collaring is less invasive and allows researchers to collect detailed samples. Not only was extensive knowledge and experience gained during the process, but he also initiated interest from the filmmaker and conservationist, Ashley Scott Davison, executive producer of Iniosante Inc. 

Getting to tell the story

Davison, who was doing research for a film on giraffe learnt about the silent extinction of the species. In a great number of countries giraffe numbers have been declining by as much as 40% over only a few years since 2000. Today West Africa has between 400 to 600 giraffe left while four out of five giraffes were lost in East Africa since 2000. This is a considerable decline in numbers and poses a real threat to the survival of the species in the longer term. At the end of 2016, the giraffe was classified as vulnerable on the International Union for Conservation of Nature Red Data list.

According to Davison, children in school learn about the destruction caused by ivory poaching and habitat loss. But in Africa today, there are six times as many elephants as there are giraffes. 

In the process to find out more about this majestic species Davison learnt of Dr Deacon’s work. After being introduced to and spending time with Dr Deacon, Davison not only describes the UFS as the leader in the conservation of giraffes but he returned to the university, three times to help build a dedicated research team to address unanswered research questions within various disciplines.

Flowing from the affiliation with the UFS is Iniosante’s award-winning production of a documentary, “Last of the Longnecks”. The film has received several awards, including official selection at the 2017 Global Peace Film Festival, the Wildlife Conservation Film Festival and the Environmental Film Festival in the US capital. 

The film team accompanied the multispecialist research team last week to gather footage for a follow-up documentary, “Catching Giants”. This film is expected to air in middle 2018.

 Video clip of the event: https://www.dropbox.com/s/d3kv9we690bwwto/giraffe_UFS_revision-01a.mp4?dl=0

Video clip of the event: RooistoelTV

Former articles on this topic:

18 Nov 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7964 
23 August 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7856 
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept