Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2021 | Story Prof Felicity Burt, Prof Dominique Goedhals & Dr Sabeehah Vawda | Photo istock

Opinion article by Prof Felicity Burt, Prof Dominique Goedhals, and Dr Sabeehah Vawda, Division of Virology, Faculty of Health Sciences, University of the Free State and National Health Laboratory Service, Bloemfontein. 

As we optimistically embarked on a new year with hopes of seeing an end to the global pandemic, masks, and social restrictions, our news channels were consumed with stories about virus variants and vaccine roll-out. What do these variants mean and will the vaccines protect against the changes that have emerged in the virus and save us from the new normal?

The news of a ‘mutated’ virus most likely conjures movie-like images of an invisible, indestructible enemy causing massive disruption. The reality is fortunately much less dramatic, as these changes are actually expected. Just to reiterate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an RNA genome that codes for all the proteins which the virus produces. The exact details of how the virus replicates and produces new progeny, although of interest, are beyond the scope of this article. It is sufficient at this point to merely acknowledge that, during replication, the mechanism employed by viruses with an RNA genome allows for the introduction of mutations in the genes that code for the viral proteins. This is expected to occur and there is substantial evidence that the SARS-CoV-2 viral genes have evolved and adapted globally. Some mutations are silent, in other words, they do not change the viral proteins. However, in some instances the changes can affect the proteins encoded by the virus. If these changes occur in regions of the protein responsible for binding to the cell receptors that facilitate entry of the virus into the cell, or in regions of the protein that induce an immune response, the virus may show new characteristics, such as more successful transmission or escape from an existing immune response. 

Second wave of infections

South Africa and the United Kingdom are probably the two countries globally that have methodically sequenced the largest number of SARS-CoV-2 viruses isolated from patients. This technique allows the determination of the complete genome of each isolate and subsequent comparison, using bioinformatic software specifically designed to compare and identify changes and mutations in the nucleotide sequences. As we are all now aware, scientists in these two countries have identified virus variants with an accumulation of mutations and deletions occurring in the gene that encodes for the viral spike protein associated with binding to cell receptors and inducing protective immune responses. These variants have now become the predominant lineages circulating within local communities. 

In December 2020, scientists in South Africa revealed the presence of a variant of concern (VOC), now referred to as 501Y.V2. Sequence data confirmed that this variant initially emerged in October 2020, and by January 2021 it was present in multiple provinces in the country and is considered to be responsible for a significant number of cases occurring in the second wave of infections in the country. A second VOC reported by scientists in the United Kingdom in December 2020, (202012/01) likely emerged during September 2020. A third VOC has been reported from Brazil and is simply known as variant P1. To date, variant 501Y.V2 has been reported from at least 23 countries. VOC 202012/01 has been reported in at least 60 countries, and although the cases were initially associated with travellers, there is an increasing number of clusters of cases occurring in people with no history of travel. The United States, Israel, and India currently have the highest number of cases associated with this variant outside of the UK, keeping in mind that at the rate at which the pandemic unfolds, these statistics quickly become outdated. In contrast, variant P1 has only been reported from Brazil, and outside of Brazil it has been associated with travellers in a small number of countries. 

Immune responses

Changes in viral proteins may or may not influence certain characteristics of a viral infection. Current epidemiological data and modelling have all suggested that the VOC circulating in South Africa and the UK are more transmissible than previous lineages of the SARS-CoV-2. Despite the increased transmissibility, to date the severity of illness and the proportion of severe disease in different age groups appear to be unaffected by the changes in the protein. The increased transmissibility has increased the burden on the public and private health systems, emphasising the importance of rolling out a vaccine to healthcare workers and persons at increased risk of severe illness. 

The changes in the spike protein responsible for inducing immune responses have sparked research studies to determine whether the vaccines will be able to protect against the new variants.  It must be remembered that there are two arms to the immune response with complex interactions, and that natural protection will likely be a combination of responses. However, the presence of antibodies that neutralise the virus, in other words, block it from entering cells, and the ability of these neutralising antibodies to block new variants from entering the cells, can be investigated in the laboratory. Although the exact responses required for protection are not fully understood and will require studies that take more time to complete, an indication of neutralising capacity provides some information with regard to the potential efficacy of the vaccine against variants. What we currently know from laboratory research is that there is a reduction in the ability of antibody from people previously infected during the first wave of cases to neutralise the new variant circulating in South Africa. This reduction varied among the cohort of samples tested, but overall, there was a weaker neutralising capability. Similar results were demonstrated using pseudoviruses representing the variant virus. Studies looking at antibodies in people who have been vaccinated show similar reductions in neutralisation. The answer is unfortunately not clear at this stage, with many pieces of the puzzle still to be determined. The reduced capacity to neutralise in a laboratory was not what we wanted to hear, but it must be remembered that vaccines induce a broad immune response and not only neutralise antibody, and hence there are other components to the immune response that will likely contribute to protection. Nonetheless, even a reduced immune response will contribute towards vaccine-induced herd immunity and saving lives by preventing severe disease. 

Vaccine trials

In addition to the vaccines currently in use, results were released from clinical trials using vaccines from Novavax and Johnson & Johnson. Although a lower efficacy was shown among the South African population compared to results obtained in the UK, the efficacy was still in the region of 57% to 60%, which is certainly encouraging in view of the new variant circulating. The differences observed illustrate the importance of conducting vaccine trials in local populations. An efficacy of 60% will still contribute towards herd immunity and the prevention of severe disease, emphasising the importance of a rapid roll-out and hopefully a high uptake of the vaccine. Vaccination will not only protect the vaccinee but should contribute to minimising the risk of further variants emerging. 

The roll-out of vaccine, further research on immune responses in vaccinated communities, epidemiological data, and sequence data will all contribute towards monitoring the evolution of the outbreak. Flu vaccines are modified annually and if the COVID-19 vaccine needs to be modified, manufacturers have the capability to do this, and some have already started this process. 

Additional waves of infection are predicted to occur until herd immunity can be achieved. Whether the current variants will be responsible for the next wave is not possible to predict, and continued research analysing the gene sequences of future isolates will play an important role in determining how the virus is evolving. 

In the interim, until we have sufficient vaccine-induced herd immunity to provide protection, non-pharmaceutical interventions and human behaviour will continue to play the important role of minimising new infections. To quote CS Lewis: “You can’t go back and change the beginning, but you can start where you are and change the ending.”

 

News Archive

The state of HIV/AIDS at the UFS
2010-05-11

“The University of the Free State (UFS) remains concerned about the threat of HIV/AIDS and will not become complacent in its efforts to combat HIV/AIDS by preventing new infections”, states Ms Estelle Heideman, Manager of the Kovsies HIV/AIDS Centre at the UFS.

She was responding to the results of a study that was done at Higher Education Institutions (HEIs) in 2008. The survey was initiated by Higher Education AIDS (HEAIDS) to establish the knowledge, attitudes, behaviours and practices (KABP) related to HIV and AIDS and to measure the HIV prevalence levels among staff and students. The primary aim of this research was to develop estimates for the sector.

The study populations consisted of students and employees from 21 HEIs in South Africa where contact teaching occurs. For the purpose of the cross-sectional study an ‘anonymous HIV survey with informed consent’ was used. The study comprised an HIV prevalence study, KABP survey, a qualitative study, and a risk assessment.

Each HEI was stratified by campus and faculty, whereupon clusters of students and staff were randomly selected. Self-administered questionnaires were used to obtain demographic, socio-economic and behavioural data. The HIV status of participants was determined by laboratory testing of dry blood spots obtained by finger pricks. The qualitative study consisted of focus group discussions and key informant interviews at each HEI.

Ethical approval was provided by the UFS Ethics Committee. Participation in all research was voluntary and written informed consent was obtained from all participants. Fieldwork for the study was conducted between September 2008 and February 2009.

A total of 1 004 people participated at the UFS, including the Main and the Qwaqwa campuses, comprising 659 students, 85 academic staff and 256 administration/service staff. The overall response rate was 75,6%.

The main findings of the study were:

HIV prevalence among students was 3,5%, 0% among academics, 1,3% among administrative staff, and 12,4% among service staff. “This might not be a true reflection of the actual prevalence of HIV at the UFS, as the sample was relatively small,” said Heideman. However, she went on to say that if we really want to show our commitment towards fighting this disease at our institution a number of problem areas should be addressed:

  • Around half of all students under the age of 20 have had sex before and this increased to almost three-quarters of students older than 20.

     
  • The majority of staff and a third of students had ever been tested for HIV.

     
  • More than 50% of students drink more than once per week and 44% of students reported being drunk in the past month. Qualitative data suggests that binge drinking over weekends and at campus ‘bashes’ is an area of concern.

Recommendations of the study:

  • Emphasis should be on increased knowledge of sexual risk behaviours, in particular those involving a high turnover of sexual partners and multiple sexual partnerships. Among students, emphasis should further be placed on staying HIV negative throughout university study.

     
  • The distribution of condoms on all campuses should be expanded, systematised and monitored. If resistance is encountered, attempts should be made to engage and educate dissenting institutional members about the importance of condom use in HIV prevention.

     
  • The relationship between alcohol misuse and pregnancy, sexually transmitted infections (STIs), HIV and AIDS needs to be made known, and there should be a drive to curb high levels of student drinking, promote non-alcohol oriented forms of recreation, and improve regulation of alcohol consumption at university-sponsored “bashes”.

     
  • There is need to reach out to students and staff who have undergone HIV testing and who know their HIV status, but do not access or benefit from support services. Because many HIV-positive students and staff are not receiving any kind of support, resources should be directed towards the development of HIV care services, including support groups.

Says Heideman, “If we really want to prove that we are serious about an HIV/AIDS-free campus, these results are a good starting point. It definitely provides us with a strong basis from which to work.” Since the study was done in 2008 the UFS has committed itself to a more comprehensive response to HIV/AIDS. The current proposed ‘HIV/AIDS Institutional response and strategic plan’, builds and expands on work that has been done before, the lessons learned from previous interventions, and a thorough study of good practices at other universities.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
10 May 2010

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept