Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2021 | Story Prof Felicity Burt, Prof Dominique Goedhals & Dr Sabeehah Vawda | Photo istock

Opinion article by Prof Felicity Burt, Prof Dominique Goedhals, and Dr Sabeehah Vawda, Division of Virology, Faculty of Health Sciences, University of the Free State and National Health Laboratory Service, Bloemfontein. 

As we optimistically embarked on a new year with hopes of seeing an end to the global pandemic, masks, and social restrictions, our news channels were consumed with stories about virus variants and vaccine roll-out. What do these variants mean and will the vaccines protect against the changes that have emerged in the virus and save us from the new normal?

The news of a ‘mutated’ virus most likely conjures movie-like images of an invisible, indestructible enemy causing massive disruption. The reality is fortunately much less dramatic, as these changes are actually expected. Just to reiterate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an RNA genome that codes for all the proteins which the virus produces. The exact details of how the virus replicates and produces new progeny, although of interest, are beyond the scope of this article. It is sufficient at this point to merely acknowledge that, during replication, the mechanism employed by viruses with an RNA genome allows for the introduction of mutations in the genes that code for the viral proteins. This is expected to occur and there is substantial evidence that the SARS-CoV-2 viral genes have evolved and adapted globally. Some mutations are silent, in other words, they do not change the viral proteins. However, in some instances the changes can affect the proteins encoded by the virus. If these changes occur in regions of the protein responsible for binding to the cell receptors that facilitate entry of the virus into the cell, or in regions of the protein that induce an immune response, the virus may show new characteristics, such as more successful transmission or escape from an existing immune response. 

Second wave of infections

South Africa and the United Kingdom are probably the two countries globally that have methodically sequenced the largest number of SARS-CoV-2 viruses isolated from patients. This technique allows the determination of the complete genome of each isolate and subsequent comparison, using bioinformatic software specifically designed to compare and identify changes and mutations in the nucleotide sequences. As we are all now aware, scientists in these two countries have identified virus variants with an accumulation of mutations and deletions occurring in the gene that encodes for the viral spike protein associated with binding to cell receptors and inducing protective immune responses. These variants have now become the predominant lineages circulating within local communities. 

In December 2020, scientists in South Africa revealed the presence of a variant of concern (VOC), now referred to as 501Y.V2. Sequence data confirmed that this variant initially emerged in October 2020, and by January 2021 it was present in multiple provinces in the country and is considered to be responsible for a significant number of cases occurring in the second wave of infections in the country. A second VOC reported by scientists in the United Kingdom in December 2020, (202012/01) likely emerged during September 2020. A third VOC has been reported from Brazil and is simply known as variant P1. To date, variant 501Y.V2 has been reported from at least 23 countries. VOC 202012/01 has been reported in at least 60 countries, and although the cases were initially associated with travellers, there is an increasing number of clusters of cases occurring in people with no history of travel. The United States, Israel, and India currently have the highest number of cases associated with this variant outside of the UK, keeping in mind that at the rate at which the pandemic unfolds, these statistics quickly become outdated. In contrast, variant P1 has only been reported from Brazil, and outside of Brazil it has been associated with travellers in a small number of countries. 

Immune responses

Changes in viral proteins may or may not influence certain characteristics of a viral infection. Current epidemiological data and modelling have all suggested that the VOC circulating in South Africa and the UK are more transmissible than previous lineages of the SARS-CoV-2. Despite the increased transmissibility, to date the severity of illness and the proportion of severe disease in different age groups appear to be unaffected by the changes in the protein. The increased transmissibility has increased the burden on the public and private health systems, emphasising the importance of rolling out a vaccine to healthcare workers and persons at increased risk of severe illness. 

The changes in the spike protein responsible for inducing immune responses have sparked research studies to determine whether the vaccines will be able to protect against the new variants.  It must be remembered that there are two arms to the immune response with complex interactions, and that natural protection will likely be a combination of responses. However, the presence of antibodies that neutralise the virus, in other words, block it from entering cells, and the ability of these neutralising antibodies to block new variants from entering the cells, can be investigated in the laboratory. Although the exact responses required for protection are not fully understood and will require studies that take more time to complete, an indication of neutralising capacity provides some information with regard to the potential efficacy of the vaccine against variants. What we currently know from laboratory research is that there is a reduction in the ability of antibody from people previously infected during the first wave of cases to neutralise the new variant circulating in South Africa. This reduction varied among the cohort of samples tested, but overall, there was a weaker neutralising capability. Similar results were demonstrated using pseudoviruses representing the variant virus. Studies looking at antibodies in people who have been vaccinated show similar reductions in neutralisation. The answer is unfortunately not clear at this stage, with many pieces of the puzzle still to be determined. The reduced capacity to neutralise in a laboratory was not what we wanted to hear, but it must be remembered that vaccines induce a broad immune response and not only neutralise antibody, and hence there are other components to the immune response that will likely contribute to protection. Nonetheless, even a reduced immune response will contribute towards vaccine-induced herd immunity and saving lives by preventing severe disease. 

Vaccine trials

In addition to the vaccines currently in use, results were released from clinical trials using vaccines from Novavax and Johnson & Johnson. Although a lower efficacy was shown among the South African population compared to results obtained in the UK, the efficacy was still in the region of 57% to 60%, which is certainly encouraging in view of the new variant circulating. The differences observed illustrate the importance of conducting vaccine trials in local populations. An efficacy of 60% will still contribute towards herd immunity and the prevention of severe disease, emphasising the importance of a rapid roll-out and hopefully a high uptake of the vaccine. Vaccination will not only protect the vaccinee but should contribute to minimising the risk of further variants emerging. 

The roll-out of vaccine, further research on immune responses in vaccinated communities, epidemiological data, and sequence data will all contribute towards monitoring the evolution of the outbreak. Flu vaccines are modified annually and if the COVID-19 vaccine needs to be modified, manufacturers have the capability to do this, and some have already started this process. 

Additional waves of infection are predicted to occur until herd immunity can be achieved. Whether the current variants will be responsible for the next wave is not possible to predict, and continued research analysing the gene sequences of future isolates will play an important role in determining how the virus is evolving. 

In the interim, until we have sufficient vaccine-induced herd immunity to provide protection, non-pharmaceutical interventions and human behaviour will continue to play the important role of minimising new infections. To quote CS Lewis: “You can’t go back and change the beginning, but you can start where you are and change the ending.”

 

News Archive

The launch of a unique conservation project
2011-06-06

 

Our Department of Animal, Wildlife and Grassland Sciences launched a very special pilot project at Woodland Hills Wildlife Estate in Bloemfontein on Friday 03 June 2011, which aims to eventually aid in the conservation and study of one of Africa’s most graceful animals.

The project aims to provide the scientific basis needed for making future decisions in the best interests of the giraffe in the Kgalagadi Transfrontier Park in the Northern Cape and involves collaring and monitoring the behaviour and movement of these animals via GPS.

Based on the public interest in the giraffe and the increased impact of the growing giraffe population on the vegetation in the area, SANParks has been considering the translocation of a number of Kgalagadi giraffe. Due to limited information regarding their adaptation success and potential impact on their new environment, thorough planning and subsequent monitoring of the species is required.

Mr Francois Deacon from our university decided to undertake a PhD study to address the existing challenges. This will be the first study of its kind, undertaken on giraffe.

He says he decided on this project because of his love for animals and conservation. “There are nine sub-species of giraffe and seven of these are already endangered. I want to involve people and make them aware of the plight of the animals and the need for conservation,” he said.

The project kicked off on Friday morning, with a group of students and curious nature-lovers tracking a herd of giraffe at Woodland Hills. The challenge laid in identifying one of the animals which could easily be collared with a GPS device, tranquilising it, and applying the device, without harming the animal.

After a young bull was identified, it was up to Dr Floris Coetzee, a veterinarian, to get close enough to the animal to tranquilise it, and to the group of students to catch it and hold it down. All this was done perfectly and the animal was fitted with its new collars. The collars were designed and made by Mr Martin Haupt, who gained extensive experience in the design of similar collars for other research studies.

Mr Deacon will spend the following two weeks personally monitoring the animal constantly, to ensure that the collars do not cause any discomfort or injury and to determine whether it should be removed or adapted.

It has taken Mr Deacon over a year to plan the collaring process and the associated study. He says the main challenges in the project are financial, since it will cost approximately R500 000 to run over five years.

Thus far he has been supported by Mr Pieter Malan of Woodland Hills, Mr Cas Kempff of Cas Kempff Consulting Engineers and Prof. Frans Swanepoel of the UFS’ Directorate of Research Development, all of whom have been benefactors of the project.
Information gathered from the pilot project will provide the data to assess how to best fit the collar onto the giraffe to ensure that the animal is comfortable and that the collar will last in the wild.  Scientific data will be generated and processed for use by the Woodland Hills Wildlife Estate management.

Should the pilot project be successful, between four and eight giraffe in the Kgalagadi will be tracked using the satellite GPS collars. The GPS collars will enable the constant recording of the location of individual giraffe for up to 2 years. This will allow control and monitoring of the animals in real-time.

The main benefits of the project include, amongst others, improved decision-making, informing tourism development, education and community involvement, improved sustainability and improved cross-border collaboration between South Africa and Botswana.

Anyone who wishes to get involved with the project or get more information, should contact Me. Sonja Buhrmann at sbuhrmann@vodamail.co.za or 0827735768.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept