Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2021 | Story Prof Felicity Burt, Prof Dominique Goedhals & Dr Sabeehah Vawda | Photo istock

Opinion article by Prof Felicity Burt, Prof Dominique Goedhals, and Dr Sabeehah Vawda, Division of Virology, Faculty of Health Sciences, University of the Free State and National Health Laboratory Service, Bloemfontein. 

As we optimistically embarked on a new year with hopes of seeing an end to the global pandemic, masks, and social restrictions, our news channels were consumed with stories about virus variants and vaccine roll-out. What do these variants mean and will the vaccines protect against the changes that have emerged in the virus and save us from the new normal?

The news of a ‘mutated’ virus most likely conjures movie-like images of an invisible, indestructible enemy causing massive disruption. The reality is fortunately much less dramatic, as these changes are actually expected. Just to reiterate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an RNA genome that codes for all the proteins which the virus produces. The exact details of how the virus replicates and produces new progeny, although of interest, are beyond the scope of this article. It is sufficient at this point to merely acknowledge that, during replication, the mechanism employed by viruses with an RNA genome allows for the introduction of mutations in the genes that code for the viral proteins. This is expected to occur and there is substantial evidence that the SARS-CoV-2 viral genes have evolved and adapted globally. Some mutations are silent, in other words, they do not change the viral proteins. However, in some instances the changes can affect the proteins encoded by the virus. If these changes occur in regions of the protein responsible for binding to the cell receptors that facilitate entry of the virus into the cell, or in regions of the protein that induce an immune response, the virus may show new characteristics, such as more successful transmission or escape from an existing immune response. 

Second wave of infections

South Africa and the United Kingdom are probably the two countries globally that have methodically sequenced the largest number of SARS-CoV-2 viruses isolated from patients. This technique allows the determination of the complete genome of each isolate and subsequent comparison, using bioinformatic software specifically designed to compare and identify changes and mutations in the nucleotide sequences. As we are all now aware, scientists in these two countries have identified virus variants with an accumulation of mutations and deletions occurring in the gene that encodes for the viral spike protein associated with binding to cell receptors and inducing protective immune responses. These variants have now become the predominant lineages circulating within local communities. 

In December 2020, scientists in South Africa revealed the presence of a variant of concern (VOC), now referred to as 501Y.V2. Sequence data confirmed that this variant initially emerged in October 2020, and by January 2021 it was present in multiple provinces in the country and is considered to be responsible for a significant number of cases occurring in the second wave of infections in the country. A second VOC reported by scientists in the United Kingdom in December 2020, (202012/01) likely emerged during September 2020. A third VOC has been reported from Brazil and is simply known as variant P1. To date, variant 501Y.V2 has been reported from at least 23 countries. VOC 202012/01 has been reported in at least 60 countries, and although the cases were initially associated with travellers, there is an increasing number of clusters of cases occurring in people with no history of travel. The United States, Israel, and India currently have the highest number of cases associated with this variant outside of the UK, keeping in mind that at the rate at which the pandemic unfolds, these statistics quickly become outdated. In contrast, variant P1 has only been reported from Brazil, and outside of Brazil it has been associated with travellers in a small number of countries. 

Immune responses

Changes in viral proteins may or may not influence certain characteristics of a viral infection. Current epidemiological data and modelling have all suggested that the VOC circulating in South Africa and the UK are more transmissible than previous lineages of the SARS-CoV-2. Despite the increased transmissibility, to date the severity of illness and the proportion of severe disease in different age groups appear to be unaffected by the changes in the protein. The increased transmissibility has increased the burden on the public and private health systems, emphasising the importance of rolling out a vaccine to healthcare workers and persons at increased risk of severe illness. 

The changes in the spike protein responsible for inducing immune responses have sparked research studies to determine whether the vaccines will be able to protect against the new variants.  It must be remembered that there are two arms to the immune response with complex interactions, and that natural protection will likely be a combination of responses. However, the presence of antibodies that neutralise the virus, in other words, block it from entering cells, and the ability of these neutralising antibodies to block new variants from entering the cells, can be investigated in the laboratory. Although the exact responses required for protection are not fully understood and will require studies that take more time to complete, an indication of neutralising capacity provides some information with regard to the potential efficacy of the vaccine against variants. What we currently know from laboratory research is that there is a reduction in the ability of antibody from people previously infected during the first wave of cases to neutralise the new variant circulating in South Africa. This reduction varied among the cohort of samples tested, but overall, there was a weaker neutralising capability. Similar results were demonstrated using pseudoviruses representing the variant virus. Studies looking at antibodies in people who have been vaccinated show similar reductions in neutralisation. The answer is unfortunately not clear at this stage, with many pieces of the puzzle still to be determined. The reduced capacity to neutralise in a laboratory was not what we wanted to hear, but it must be remembered that vaccines induce a broad immune response and not only neutralise antibody, and hence there are other components to the immune response that will likely contribute to protection. Nonetheless, even a reduced immune response will contribute towards vaccine-induced herd immunity and saving lives by preventing severe disease. 

Vaccine trials

In addition to the vaccines currently in use, results were released from clinical trials using vaccines from Novavax and Johnson & Johnson. Although a lower efficacy was shown among the South African population compared to results obtained in the UK, the efficacy was still in the region of 57% to 60%, which is certainly encouraging in view of the new variant circulating. The differences observed illustrate the importance of conducting vaccine trials in local populations. An efficacy of 60% will still contribute towards herd immunity and the prevention of severe disease, emphasising the importance of a rapid roll-out and hopefully a high uptake of the vaccine. Vaccination will not only protect the vaccinee but should contribute to minimising the risk of further variants emerging. 

The roll-out of vaccine, further research on immune responses in vaccinated communities, epidemiological data, and sequence data will all contribute towards monitoring the evolution of the outbreak. Flu vaccines are modified annually and if the COVID-19 vaccine needs to be modified, manufacturers have the capability to do this, and some have already started this process. 

Additional waves of infection are predicted to occur until herd immunity can be achieved. Whether the current variants will be responsible for the next wave is not possible to predict, and continued research analysing the gene sequences of future isolates will play an important role in determining how the virus is evolving. 

In the interim, until we have sufficient vaccine-induced herd immunity to provide protection, non-pharmaceutical interventions and human behaviour will continue to play the important role of minimising new infections. To quote CS Lewis: “You can’t go back and change the beginning, but you can start where you are and change the ending.”

 

News Archive

Twee broers lewer intreerede
2004-06-10

‘n Unieke geleentheid sal homself môre, 9 Junie 2004, voordoen wanneer twee broers - proff Francois en Janse Tolmie - tydens dieselfde geleentheid hul intreeredes aan die Universiteit van die Vrystaat (UV) sal lewer.

Prof Francois Tolmie is verbonde aan die UV se Departement Nuwe Testament en die onderwerp van sy lesing is Die impak van die metodologie op die verstaan van die Nuwe Testament. Prof Janse Tolmie, sy jonger broer, is verbonde aan die UV se Departement Rekenaarwetenskap en Informatika en die onderwerp van sy lesing is Die rol van inligtingstegnologie in kennisbestuur.

Hoewel die studievelde vér verwyderd staan, klop die twee broers se missies wat betref die terugploeg van die verworwe vakkennis ten bate van die gemeenskap. Prof Francois Tolmie is nóú betrokke by dowes en Prof Janse Tolmie tap weer kunsmatige intelligensie ten bate van die mediese wetenskap en geestesgesondheid.

Prof Francois Tolmie verwerf die grade BA, BA Honneurs (Grieks), MA (Grieks), B Th en M Th almal cum laude aan die UV. In 1992 verwerf hy 'n D Th (Nuwe Testament) en in 2004 'n Ph D (Grieks) aan dieselfde universiteit. Na sy militêre diens as kapelaan in Walvisbaai aanvaar hy 'n beroep na die NG-gemeente Walvisbaai. Hy begin sy akademiese loopbaan op 1 April 1990 as senior lektor in die Departement Nuwe Testament en word in 1999 tot medeprofessor en in 2003 tot professor bevorder.

Sy navorsingspesialiteit is die Johannesevangelie en die Brief aan die Galasiërs. Hy is tesourier van die Nuwe Testamentiese Werksgemeenskap van Suid-Afrika, lid van die Society of Biblical Literature en die Studiorum Novi Testamenti Societas, redakteur van Acta Theologica en assistent-redakteur van Neotestamentica. Hy het reeds 34 artikels in geakkrediteerde tydskrifte gepubliseer, asook drie populêr-wetenskaplike boeke en talle bydraes in populêr-wetenskaplike boeke. Hy het twee akademiese boeke in die buiteland gepubliseer - onderskeidelik in Nederland en in die VSA. Later vanjaar verskyn 'n derde akademiese boek in Duitsland. Hy is ook een van die vertalers van die Afrikaanse Bybel vir Dowes.

Prof Janse Tolmie verwerf die grade B Sc, B Sc (Hons) en M Sc (Cum Laude) in Rekenaarwetenskap aan die UV.

Hy is vanaf 1989 betrokke by die UV en was ook ’n dosent aan die Militêre Akademie in Saldanhabaai in 1990/91 en het klas gegee by DePaul Universiteit in Chicago in 2002.

In 1992 is hy vir ses maande gesekondeer na ’n patologiese firma, Van Drimmelen en Vennote, in Johannesburg vir die ontwikkeling van kennisgebaseerde sagteware. Met hierdie projek word hy een van slegs ’n handjievol navorsers in die wêreld wat daarin kon slaag om ’n mediese kundigheidstelsel te ontwikkel wat werklik gebruik word.

Hy verwerf sy Ph D in 1994 en in 1994/95 doen hy navorsing aan die Besigheidskool van Carleton Universiteit in Ottawa, Kanada. Hy word in 1997 bevorder tot mede-professor en in 2003 tot volprofessor. Vanaf 2003 tree hy op as departementele voorsitter van die UV se Departement Rekenaarwetenskap en Informatika.

Hy het meer as 30 publikasies al die lig laat sien, insluitend verskeie internasionale kongresbydraes en artikels in geakkrediteerde joernale. Hy was ook vir 2 siklusse geëvalueer by die NRF. Sy portfolio sluit in die ontwikkeling van sagteware of prototipes vir groot maatskappye soos Van Drimmelen en Vennote en Bayer Diagnostics (VSA). Sy privaatbesigheid fokus op die ontwikkeling van nismarksagteware vir tersiêre instellings. Die sagteware word tans gebruik deur afdelings aan verskeie universiteite in Suid-Afrika.

Die geleentheid vind om 19:00 in die CR Swart-ouditorium op die kampus plaas.

MEDIAVERKLARING

Uitgereik deur: Lacea Loader
Mediaverteenwoordiger
Tel: (051) 401-2584
Sel: 083 645 2454
E-pos: loaderl.stg@mail.uovs.ac.za
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept