Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2021 | Story Prof Felicity Burt, Prof Dominique Goedhals & Dr Sabeehah Vawda | Photo istock

Opinion article by Prof Felicity Burt, Prof Dominique Goedhals, and Dr Sabeehah Vawda, Division of Virology, Faculty of Health Sciences, University of the Free State and National Health Laboratory Service, Bloemfontein. 

As we optimistically embarked on a new year with hopes of seeing an end to the global pandemic, masks, and social restrictions, our news channels were consumed with stories about virus variants and vaccine roll-out. What do these variants mean and will the vaccines protect against the changes that have emerged in the virus and save us from the new normal?

The news of a ‘mutated’ virus most likely conjures movie-like images of an invisible, indestructible enemy causing massive disruption. The reality is fortunately much less dramatic, as these changes are actually expected. Just to reiterate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an RNA genome that codes for all the proteins which the virus produces. The exact details of how the virus replicates and produces new progeny, although of interest, are beyond the scope of this article. It is sufficient at this point to merely acknowledge that, during replication, the mechanism employed by viruses with an RNA genome allows for the introduction of mutations in the genes that code for the viral proteins. This is expected to occur and there is substantial evidence that the SARS-CoV-2 viral genes have evolved and adapted globally. Some mutations are silent, in other words, they do not change the viral proteins. However, in some instances the changes can affect the proteins encoded by the virus. If these changes occur in regions of the protein responsible for binding to the cell receptors that facilitate entry of the virus into the cell, or in regions of the protein that induce an immune response, the virus may show new characteristics, such as more successful transmission or escape from an existing immune response. 

Second wave of infections

South Africa and the United Kingdom are probably the two countries globally that have methodically sequenced the largest number of SARS-CoV-2 viruses isolated from patients. This technique allows the determination of the complete genome of each isolate and subsequent comparison, using bioinformatic software specifically designed to compare and identify changes and mutations in the nucleotide sequences. As we are all now aware, scientists in these two countries have identified virus variants with an accumulation of mutations and deletions occurring in the gene that encodes for the viral spike protein associated with binding to cell receptors and inducing protective immune responses. These variants have now become the predominant lineages circulating within local communities. 

In December 2020, scientists in South Africa revealed the presence of a variant of concern (VOC), now referred to as 501Y.V2. Sequence data confirmed that this variant initially emerged in October 2020, and by January 2021 it was present in multiple provinces in the country and is considered to be responsible for a significant number of cases occurring in the second wave of infections in the country. A second VOC reported by scientists in the United Kingdom in December 2020, (202012/01) likely emerged during September 2020. A third VOC has been reported from Brazil and is simply known as variant P1. To date, variant 501Y.V2 has been reported from at least 23 countries. VOC 202012/01 has been reported in at least 60 countries, and although the cases were initially associated with travellers, there is an increasing number of clusters of cases occurring in people with no history of travel. The United States, Israel, and India currently have the highest number of cases associated with this variant outside of the UK, keeping in mind that at the rate at which the pandemic unfolds, these statistics quickly become outdated. In contrast, variant P1 has only been reported from Brazil, and outside of Brazil it has been associated with travellers in a small number of countries. 

Immune responses

Changes in viral proteins may or may not influence certain characteristics of a viral infection. Current epidemiological data and modelling have all suggested that the VOC circulating in South Africa and the UK are more transmissible than previous lineages of the SARS-CoV-2. Despite the increased transmissibility, to date the severity of illness and the proportion of severe disease in different age groups appear to be unaffected by the changes in the protein. The increased transmissibility has increased the burden on the public and private health systems, emphasising the importance of rolling out a vaccine to healthcare workers and persons at increased risk of severe illness. 

The changes in the spike protein responsible for inducing immune responses have sparked research studies to determine whether the vaccines will be able to protect against the new variants.  It must be remembered that there are two arms to the immune response with complex interactions, and that natural protection will likely be a combination of responses. However, the presence of antibodies that neutralise the virus, in other words, block it from entering cells, and the ability of these neutralising antibodies to block new variants from entering the cells, can be investigated in the laboratory. Although the exact responses required for protection are not fully understood and will require studies that take more time to complete, an indication of neutralising capacity provides some information with regard to the potential efficacy of the vaccine against variants. What we currently know from laboratory research is that there is a reduction in the ability of antibody from people previously infected during the first wave of cases to neutralise the new variant circulating in South Africa. This reduction varied among the cohort of samples tested, but overall, there was a weaker neutralising capability. Similar results were demonstrated using pseudoviruses representing the variant virus. Studies looking at antibodies in people who have been vaccinated show similar reductions in neutralisation. The answer is unfortunately not clear at this stage, with many pieces of the puzzle still to be determined. The reduced capacity to neutralise in a laboratory was not what we wanted to hear, but it must be remembered that vaccines induce a broad immune response and not only neutralise antibody, and hence there are other components to the immune response that will likely contribute to protection. Nonetheless, even a reduced immune response will contribute towards vaccine-induced herd immunity and saving lives by preventing severe disease. 

Vaccine trials

In addition to the vaccines currently in use, results were released from clinical trials using vaccines from Novavax and Johnson & Johnson. Although a lower efficacy was shown among the South African population compared to results obtained in the UK, the efficacy was still in the region of 57% to 60%, which is certainly encouraging in view of the new variant circulating. The differences observed illustrate the importance of conducting vaccine trials in local populations. An efficacy of 60% will still contribute towards herd immunity and the prevention of severe disease, emphasising the importance of a rapid roll-out and hopefully a high uptake of the vaccine. Vaccination will not only protect the vaccinee but should contribute to minimising the risk of further variants emerging. 

The roll-out of vaccine, further research on immune responses in vaccinated communities, epidemiological data, and sequence data will all contribute towards monitoring the evolution of the outbreak. Flu vaccines are modified annually and if the COVID-19 vaccine needs to be modified, manufacturers have the capability to do this, and some have already started this process. 

Additional waves of infection are predicted to occur until herd immunity can be achieved. Whether the current variants will be responsible for the next wave is not possible to predict, and continued research analysing the gene sequences of future isolates will play an important role in determining how the virus is evolving. 

In the interim, until we have sufficient vaccine-induced herd immunity to provide protection, non-pharmaceutical interventions and human behaviour will continue to play the important role of minimising new infections. To quote CS Lewis: “You can’t go back and change the beginning, but you can start where you are and change the ending.”

 

News Archive

UFS welcomes Prof Francis Petersen as new Vice-Chancellor and Rector
2017-04-02

 

Prof Francis Petersen takes up office as the 14th Vice-Chancellor and Rector of the University of the Free State today.
 
“On behalf of the UFS Council and the university community, I would like to welcome Prof Petersen to the university. He brings to the UFS a distinguished academic record, confident leadership, innovative thinking, and an understanding of the extent of the challenges being experienced by universities in the broader South African context,” says Mr Willem Louw, Chairperson of the UFS Council. 
 
“I am excited to join the UFS and look forward to meeting the university community, to get to know the three campuses, and to engage with staff and students. In a way, it was a natural progression for me to be appointed in this position, having been Dean of the Faculty of Engineering and the Built Environment at the University of Cape Town (UCT), and then Deputy Vice-Chancellor: Institutional Innovation at the same university.  On the other hand, I believe that universities in South Africa need strong and innovative leadership. I would like to make a contribution to the higher-education system in this regard.  Moreover, I regard the UFS as a very good university, and see my challenge in taking the UFS to the next level,” says Prof Petersen.
 
“Challenges and making a difference motivate me – whether complex or simplistic, the opportunity to be able to provide solutions and taking people with me while developing these solutions, is what ultimately motivates me.”
 
“It is important that different viewpoints are respected. The UFS must be a place where everyone feels welcome. There must be a strong sense of belonging; staff and students must feel they are making a contribution to the university,” he says.
 
According to Prof Petersen, the major challenge for the university is its institutional climate.  “My focus would be to strive towards creating an institutional climate of inclusivity, respect for one another, valuing diversity in all its forms, and to make the university a welcoming place. The UFS is in the process of developing an Integrated Transformation Plan (ITP) that will serve as the road map to address the institutional climate challenge, but will also assist (if implemented effectively) in excelling the UFS in areas of teaching and learning, research and innovation, and community engagement through scholarship,” says Prof Petersen.

“I am a good listener, I am outcome-based, and my vision for the university includes diversity, inclusivity, and academic excellence,” he says.

Prof Petersen was born in Oudtshoorn and grew up in Malmesbury in the Western Cape, where he also matriculated. He graduated from Stellenbosch University with a BEng (Chem Eng), MEng (Metal Eng), and PhD (Eng) degrees and completed a short course on Financial Skills for Executive Management. He is a recipient of the Ernest Oppenheimer Memorial Trust Award for research excellence, and was visiting professor at the Cape Technikon and extraordinary professor in the Department of Chemical Engineering at Stellenbosch University. He is a regular reviewer of journals, and member of a range of editorial boards for international journals. He is also a registered professional engineer with the Engineering Council of South Africa and a Fellow of both the South African Institute of Mining and Metallurgy, and the South African Academy of Engineers.

 He brings to the position of Vice-Chancellor and Rector his extensive experience of management in both the industry and academic sectors. He has been the executive head of strategy at Anglo American Platinum and head of the Department of Chemical Engineering at the Cape Technikon (now Cape Peninsula University of Technology). Among others, he previously served as member on the Board of the Council of Scientific and Industrial Research, the National Advisory Council on Innovation, and the Council of the Academy of Science of South Africa.

 Prof Petersen is married and has two sons. He was appointed by the UFS Council at the end of 2016 after Prof Jonathan Jansen stepped down as Vice-Chancellor and Rector on 31 August 2016, serving in this position since July 2009. Prof Nicky Morgan, Vice-Rector: Operations at the UFS, has been acting Vice-Chancellor and Rector since 1 September 2016.

 

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept