Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Igno van Niekerk | Photo Supplied
Pictured from the left: Lucas Erasmus from the Department of Physics, Piet le Roux from the Astronomical Society of SA – Bloemfontein, Quinton Kaplan from the Department of Physics, Thinus van der Merwe from the Astronomical Society of SA – Bloemfontein. Front: Prof Matie Hoffman

In his book, The World is Flat, Thomas Friedman mentions how at first countries, then companies, and eventually communities went global. In true flat-world fashion, a combined team of the University of the Free State (UFS) and the Astronomical Society of South Africa – led by Prof Matie Hoffman, Associate Professor in the Department of Physics – participated in a once-in-a-lifetime event with their counterparts from the Ellinogermaniki Agogi School and the Skinakas Observatory in Greece.

On 21 December 2020, Earth was treated to the Jupiter-Saturn conjunction, when the two planets were only 0.1 degrees apart in the sky. Although conjunctions are regular phenomena, NASA mentions that the great conjunction of Jupiter and Saturn in 2020 was the closest since 1623 and the closest observable since 1226! A pinkie finger at arm’s length could cover both planets – although they were still millions of kilometres apart in space.

Planning started months ahead of the event, with the Ellinogermaniki Agogi Observatory in Greece and the Boyden Observatory in Bloemfontein chosen as the two selected vantage points. From both the Southern and Northern Hemisphere, the conjunction would be broadcast live on YouTube. As with any other technical project on an international scale, challenges arose. For example, in the Northern Hemisphere, it was already dark at 17:45 while the South African astronomers were still basking in sunlight until after 19:00. The conjunction would only be visible from South Africa after 19:30, almost two hours after it would be visible in Athens. The time was well used, with the event including a word of welcome by the Consul General of Greece in South Africa, Ioannis Chatzantonakis, presentations on Saturn and Jupiter, as well as a virtual tour of the Boyden Observatory, emphasising its connection with Greece through its first Director, Stefanos Paraskevopoulos. 

On Saturday, 19 December, the teams ‘gathered’ on opposite sides of planet Earth to do a dry run. One could sense the urgency and tension as both teams realised that they would have a huge captive audience on YouTube, and plans had to be made in case of connectivity challenges and if the weather did not allow the conjunction. As preparations progressed, Prof Hoffman was talking to his Greek counterparts and was simultaneously walking around with his laptop to share the landscape and activities via his webcam with colleagues in Greece. 

Monday 21 December 2020 – the weather prediction was correct. Clouds covered the Free State sky and scattered raindrops started to fall. Revert to Plan B. A recording made on Saturday evening was shared via the YouTube link, while a live feed of the conjunction from elsewhere in South Africa was arranged. From both sides of the world, information was shared about the history of the venues, as well as the marvel of what was happening in space. Fortunately, expert planetary photographer Clyde Foster was able to share a live feed just after 19:30 from the observatory at his home in Centurion, Gauteng. Those attending the event where visuals and speakers were together on one screen – yet thousands of kilometres apart – watching an event in outer space, will indeed agree with Thomas Friedman: the world is flat. The live-stream event of the conjunction was a catalyst that will result in continued collaboration between the UFS and colleagues in Greece in the field of astronomy. 

By the time of this writing, the livestream has reached more than 50 000 people.


News Archive

New digital planetarium first of its kind for Sub-Saharan Africa
2013-10-10

Mr Andrew Johnson, Sky-Skan engineer, explains how the dataprojector of the new digital planetarium functions.
10 October 2013

The University of the Free State (UFS) is the first in the world to boast a modern digital planetarium which was erected within an existing observatory.

It is also the first planetarium of its kind for Sub-Saharan Africa.

“What makes the project unique is the fact that we convert the existing observatory structure into a modern digital planetarium. It hasn’t been done anywhere else,” says Andrew Johnson, engineer at Sky-Skan, the company supplying the equipment and also installing it.

Andrew has worked on similar projects, with his company installing digital planetariums around the world.

What makes the planetarium so special is the fact that it offers visitors an inclusive experience.

“Previously visitors could only watch projected stars and constellations, but with the digital planetarium they can now experience a journey through space which feels very close to reality.”

Andrew points out that, apart from stargazing and travelling through space, the digital planetarium allows the audience to visit planets, explore the secrets of the oceans or even organs in the human body.

The planetarium will also be used for concerts, state-of-the-art presentations, theatre productions, as well as meetings, conferences and exhibitions.

The auditorium can seat approximately 90 adults or 120 children.

The digital dome that was recently fitted into the existing observatory structure, is a 12-metre seamless aluminium screen complemented by a powerful surround-sound system and multiple data projectors from Sky-Skan. This results in an immersive experience of the digital universe, as well as the recreation of the macro and micro cosmos an a variety of other environments.

The planetarium will be officially opened on Friday 1 November 2013 by Derek Hanekom, Minister of Science and Technology. Prof Matie Hoffman from the Department of Physics at the UFS is delighted at this visit from Minister Hanekom.

“This recognition and national interest demonstrates the importance and contribution of the first digital planetarium in Sub-Saharan Africa to science and astronomy.  It is also evidence that a facility like this is important for the training of the next generation of scientists.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept