Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Igno van Niekerk | Photo Supplied
Pictured from the left: Lucas Erasmus from the Department of Physics, Piet le Roux from the Astronomical Society of SA – Bloemfontein, Quinton Kaplan from the Department of Physics, Thinus van der Merwe from the Astronomical Society of SA – Bloemfontein. Front: Prof Matie Hoffman

In his book, The World is Flat, Thomas Friedman mentions how at first countries, then companies, and eventually communities went global. In true flat-world fashion, a combined team of the University of the Free State (UFS) and the Astronomical Society of South Africa – led by Prof Matie Hoffman, Associate Professor in the Department of Physics – participated in a once-in-a-lifetime event with their counterparts from the Ellinogermaniki Agogi School and the Skinakas Observatory in Greece.

On 21 December 2020, Earth was treated to the Jupiter-Saturn conjunction, when the two planets were only 0.1 degrees apart in the sky. Although conjunctions are regular phenomena, NASA mentions that the great conjunction of Jupiter and Saturn in 2020 was the closest since 1623 and the closest observable since 1226! A pinkie finger at arm’s length could cover both planets – although they were still millions of kilometres apart in space.

Planning started months ahead of the event, with the Ellinogermaniki Agogi Observatory in Greece and the Boyden Observatory in Bloemfontein chosen as the two selected vantage points. From both the Southern and Northern Hemisphere, the conjunction would be broadcast live on YouTube. As with any other technical project on an international scale, challenges arose. For example, in the Northern Hemisphere, it was already dark at 17:45 while the South African astronomers were still basking in sunlight until after 19:00. The conjunction would only be visible from South Africa after 19:30, almost two hours after it would be visible in Athens. The time was well used, with the event including a word of welcome by the Consul General of Greece in South Africa, Ioannis Chatzantonakis, presentations on Saturn and Jupiter, as well as a virtual tour of the Boyden Observatory, emphasising its connection with Greece through its first Director, Stefanos Paraskevopoulos. 

On Saturday, 19 December, the teams ‘gathered’ on opposite sides of planet Earth to do a dry run. One could sense the urgency and tension as both teams realised that they would have a huge captive audience on YouTube, and plans had to be made in case of connectivity challenges and if the weather did not allow the conjunction. As preparations progressed, Prof Hoffman was talking to his Greek counterparts and was simultaneously walking around with his laptop to share the landscape and activities via his webcam with colleagues in Greece. 

Monday 21 December 2020 – the weather prediction was correct. Clouds covered the Free State sky and scattered raindrops started to fall. Revert to Plan B. A recording made on Saturday evening was shared via the YouTube link, while a live feed of the conjunction from elsewhere in South Africa was arranged. From both sides of the world, information was shared about the history of the venues, as well as the marvel of what was happening in space. Fortunately, expert planetary photographer Clyde Foster was able to share a live feed just after 19:30 from the observatory at his home in Centurion, Gauteng. Those attending the event where visuals and speakers were together on one screen – yet thousands of kilometres apart – watching an event in outer space, will indeed agree with Thomas Friedman: the world is flat. The live-stream event of the conjunction was a catalyst that will result in continued collaboration between the UFS and colleagues in Greece in the field of astronomy. 

By the time of this writing, the livestream has reached more than 50 000 people.


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept