Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Igno van Niekerk | Photo Supplied
Pictured from the left: Lucas Erasmus from the Department of Physics, Piet le Roux from the Astronomical Society of SA – Bloemfontein, Quinton Kaplan from the Department of Physics, Thinus van der Merwe from the Astronomical Society of SA – Bloemfontein. Front: Prof Matie Hoffman

In his book, The World is Flat, Thomas Friedman mentions how at first countries, then companies, and eventually communities went global. In true flat-world fashion, a combined team of the University of the Free State (UFS) and the Astronomical Society of South Africa – led by Prof Matie Hoffman, Associate Professor in the Department of Physics – participated in a once-in-a-lifetime event with their counterparts from the Ellinogermaniki Agogi School and the Skinakas Observatory in Greece.

On 21 December 2020, Earth was treated to the Jupiter-Saturn conjunction, when the two planets were only 0.1 degrees apart in the sky. Although conjunctions are regular phenomena, NASA mentions that the great conjunction of Jupiter and Saturn in 2020 was the closest since 1623 and the closest observable since 1226! A pinkie finger at arm’s length could cover both planets – although they were still millions of kilometres apart in space.

Planning started months ahead of the event, with the Ellinogermaniki Agogi Observatory in Greece and the Boyden Observatory in Bloemfontein chosen as the two selected vantage points. From both the Southern and Northern Hemisphere, the conjunction would be broadcast live on YouTube. As with any other technical project on an international scale, challenges arose. For example, in the Northern Hemisphere, it was already dark at 17:45 while the South African astronomers were still basking in sunlight until after 19:00. The conjunction would only be visible from South Africa after 19:30, almost two hours after it would be visible in Athens. The time was well used, with the event including a word of welcome by the Consul General of Greece in South Africa, Ioannis Chatzantonakis, presentations on Saturn and Jupiter, as well as a virtual tour of the Boyden Observatory, emphasising its connection with Greece through its first Director, Stefanos Paraskevopoulos. 

On Saturday, 19 December, the teams ‘gathered’ on opposite sides of planet Earth to do a dry run. One could sense the urgency and tension as both teams realised that they would have a huge captive audience on YouTube, and plans had to be made in case of connectivity challenges and if the weather did not allow the conjunction. As preparations progressed, Prof Hoffman was talking to his Greek counterparts and was simultaneously walking around with his laptop to share the landscape and activities via his webcam with colleagues in Greece. 

Monday 21 December 2020 – the weather prediction was correct. Clouds covered the Free State sky and scattered raindrops started to fall. Revert to Plan B. A recording made on Saturday evening was shared via the YouTube link, while a live feed of the conjunction from elsewhere in South Africa was arranged. From both sides of the world, information was shared about the history of the venues, as well as the marvel of what was happening in space. Fortunately, expert planetary photographer Clyde Foster was able to share a live feed just after 19:30 from the observatory at his home in Centurion, Gauteng. Those attending the event where visuals and speakers were together on one screen – yet thousands of kilometres apart – watching an event in outer space, will indeed agree with Thomas Friedman: the world is flat. The live-stream event of the conjunction was a catalyst that will result in continued collaboration between the UFS and colleagues in Greece in the field of astronomy. 

By the time of this writing, the livestream has reached more than 50 000 people.


News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept