Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Igno van Niekerk | Photo Supplied
Pictured from the left: Lucas Erasmus from the Department of Physics, Piet le Roux from the Astronomical Society of SA – Bloemfontein, Quinton Kaplan from the Department of Physics, Thinus van der Merwe from the Astronomical Society of SA – Bloemfontein. Front: Prof Matie Hoffman

In his book, The World is Flat, Thomas Friedman mentions how at first countries, then companies, and eventually communities went global. In true flat-world fashion, a combined team of the University of the Free State (UFS) and the Astronomical Society of South Africa – led by Prof Matie Hoffman, Associate Professor in the Department of Physics – participated in a once-in-a-lifetime event with their counterparts from the Ellinogermaniki Agogi School and the Skinakas Observatory in Greece.

On 21 December 2020, Earth was treated to the Jupiter-Saturn conjunction, when the two planets were only 0.1 degrees apart in the sky. Although conjunctions are regular phenomena, NASA mentions that the great conjunction of Jupiter and Saturn in 2020 was the closest since 1623 and the closest observable since 1226! A pinkie finger at arm’s length could cover both planets – although they were still millions of kilometres apart in space.

Planning started months ahead of the event, with the Ellinogermaniki Agogi Observatory in Greece and the Boyden Observatory in Bloemfontein chosen as the two selected vantage points. From both the Southern and Northern Hemisphere, the conjunction would be broadcast live on YouTube. As with any other technical project on an international scale, challenges arose. For example, in the Northern Hemisphere, it was already dark at 17:45 while the South African astronomers were still basking in sunlight until after 19:00. The conjunction would only be visible from South Africa after 19:30, almost two hours after it would be visible in Athens. The time was well used, with the event including a word of welcome by the Consul General of Greece in South Africa, Ioannis Chatzantonakis, presentations on Saturn and Jupiter, as well as a virtual tour of the Boyden Observatory, emphasising its connection with Greece through its first Director, Stefanos Paraskevopoulos. 

On Saturday, 19 December, the teams ‘gathered’ on opposite sides of planet Earth to do a dry run. One could sense the urgency and tension as both teams realised that they would have a huge captive audience on YouTube, and plans had to be made in case of connectivity challenges and if the weather did not allow the conjunction. As preparations progressed, Prof Hoffman was talking to his Greek counterparts and was simultaneously walking around with his laptop to share the landscape and activities via his webcam with colleagues in Greece. 

Monday 21 December 2020 – the weather prediction was correct. Clouds covered the Free State sky and scattered raindrops started to fall. Revert to Plan B. A recording made on Saturday evening was shared via the YouTube link, while a live feed of the conjunction from elsewhere in South Africa was arranged. From both sides of the world, information was shared about the history of the venues, as well as the marvel of what was happening in space. Fortunately, expert planetary photographer Clyde Foster was able to share a live feed just after 19:30 from the observatory at his home in Centurion, Gauteng. Those attending the event where visuals and speakers were together on one screen – yet thousands of kilometres apart – watching an event in outer space, will indeed agree with Thomas Friedman: the world is flat. The live-stream event of the conjunction was a catalyst that will result in continued collaboration between the UFS and colleagues in Greece in the field of astronomy. 

By the time of this writing, the livestream has reached more than 50 000 people.


News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept