Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 January 2021 | Story Thabo Kessah | Photo Supplied
The new book that Dr Tshepo Moloi has co-edited puts a spotlight on liberation struggle radios.

Dr Tshepo Moloi from the Qwaqwa Campus Department of History is the co-editor of a new book called Guerrilla Radios in Southern Africa: Broadcasters, Technology, Propaganda Wars, and the Armed Struggle.
This book is a collection of eleven essays on the histories of the radios attached to the armed wings of the liberation movements in the region. “This book is a shift from a parochial approach, which tended to analyse guerrilla radios within the framework of the nation state. It focuses on the experiences of the broadcasters and listeners during the era of the armed struggle. Using archival sources such as sound recordings of the guerrilla radio stations, together with interviews conducted with former broadcasters and listeners, the essays contained in this volume ask complex questions about the social histories of these stations,” said Dr Moloi.
Dr Moloi added that the essays explore the workings of propaganda and counter-propaganda and probe the effects that the radios had on the activists and supporters of the liberation movements – and, on the other hand, on the colonial counter-insurgency projects. They examine the relationships that these radios have forged at their multiple sites of operation in host countries, and also look at international solidarity and support, specifically for radio broadcasting initiatives. 
Role played by guerrilla radio
“Our volume pushes the frontiers of knowledge production beyond exploration of broadcast content towards a more nuanced conception of radio as a medium formed by social and political processes. Guerrilla radio broadcasting, we argue, became a very powerful technology for disseminating insurgent propaganda messages of the liberation movements and for mobilising African workers, peasants, students and youth in the struggle against white minority domination in the entire region. From Angola to Mozambique, and from Zimbabwe to Namibia through to South Africa, the modern technology of radio has provided the liberation movements in exile with a platform for an aural or sonic presence among the followers of the liberation movements back home. It has become an effective instrument for propagating the ideologies of the liberation movements, as well as for countering the propaganda messages of the oppressive white minority regimes,” he added.
Conceptualisation of the book
He also revealed the thinking behind the book. “The concept arose from the realisation that despite the explosion of research on liberation struggles in Southern Africa, such as memoirs, biographies, and autobiographies of prominent leaders of the movements, as well as a scattering of (auto)biographies of the foot soldiers, there remained a dearth of studies on the media that the liberation movements employed, particularly radio.”
Other editors are Sekibakiba Peter Lekgoathi, a professor of History at Wits University and Prof Alda Romão Saúte Saíde from Pedagogic University in Maputo, Mozambique. The project was funded by the National Institute for the Humanities and Social Sciences’ (NIHSS) Catalytic Research Project.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept