Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 January 2021 | Story Thabo Kessah | Photo Supplied
The new book that Dr Tshepo Moloi has co-edited puts a spotlight on liberation struggle radios.

Dr Tshepo Moloi from the Qwaqwa Campus Department of History is the co-editor of a new book called Guerrilla Radios in Southern Africa: Broadcasters, Technology, Propaganda Wars, and the Armed Struggle.
This book is a collection of eleven essays on the histories of the radios attached to the armed wings of the liberation movements in the region. “This book is a shift from a parochial approach, which tended to analyse guerrilla radios within the framework of the nation state. It focuses on the experiences of the broadcasters and listeners during the era of the armed struggle. Using archival sources such as sound recordings of the guerrilla radio stations, together with interviews conducted with former broadcasters and listeners, the essays contained in this volume ask complex questions about the social histories of these stations,” said Dr Moloi.
Dr Moloi added that the essays explore the workings of propaganda and counter-propaganda and probe the effects that the radios had on the activists and supporters of the liberation movements – and, on the other hand, on the colonial counter-insurgency projects. They examine the relationships that these radios have forged at their multiple sites of operation in host countries, and also look at international solidarity and support, specifically for radio broadcasting initiatives. 
Role played by guerrilla radio
“Our volume pushes the frontiers of knowledge production beyond exploration of broadcast content towards a more nuanced conception of radio as a medium formed by social and political processes. Guerrilla radio broadcasting, we argue, became a very powerful technology for disseminating insurgent propaganda messages of the liberation movements and for mobilising African workers, peasants, students and youth in the struggle against white minority domination in the entire region. From Angola to Mozambique, and from Zimbabwe to Namibia through to South Africa, the modern technology of radio has provided the liberation movements in exile with a platform for an aural or sonic presence among the followers of the liberation movements back home. It has become an effective instrument for propagating the ideologies of the liberation movements, as well as for countering the propaganda messages of the oppressive white minority regimes,” he added.
Conceptualisation of the book
He also revealed the thinking behind the book. “The concept arose from the realisation that despite the explosion of research on liberation struggles in Southern Africa, such as memoirs, biographies, and autobiographies of prominent leaders of the movements, as well as a scattering of (auto)biographies of the foot soldiers, there remained a dearth of studies on the media that the liberation movements employed, particularly radio.”
Other editors are Sekibakiba Peter Lekgoathi, a professor of History at Wits University and Prof Alda Romão Saúte Saíde from Pedagogic University in Maputo, Mozambique. The project was funded by the National Institute for the Humanities and Social Sciences’ (NIHSS) Catalytic Research Project.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept