Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 January 2021 | Story Leonie Bolleurs | Photo Supplied
Hay’s family celebrated his graduation ceremony with him in 2013. Pictured here are Frank Hay (father), Hay, his brother, Shanley and his mother, Vasi Hay.

Diversity, inclusivity, and transformation are what sets the University of the Free State (UFS) apart from other institutions of tertiary education. It instils in graduates the values of attention to detail and precision, being meticulous, adherence to deadlines, being honest, ethical, and taking the ‘moral high ground’. 

Graduates at the UFS are also introduced to high levels of dedication and commitment, irrespective of the task at hand; taking pride in producing work of high quality; having a non-discriminatory mindset; the ability to be team players or leaders (depending on what needs to be done); and demonstrating an understanding and consideration for society at large. 

This is the view of Ashley Hay, a successful UFS alumnus who completed his honours (accepted through the Recognition of Prior Learning process) and master’s degrees (graduating cum laude) in the Department of Urban and Regional Planning. Throughout his academic career, Hay has achieved good results and accolades such as Best Master’s Student, Best Master’s Dissertation, Best Research in Advanced Planning Practice, and also receiving membership of the Golden Key International Honour Society.

Today, he is employed by the Gauteng Provincial Government as Director: Land Use Management and Statutory Boards in the Office of the Premier and is in transition to a new branch called ‘Urban Planning’ under the Minister for Cooperative Governance, Urban Planning and Human Settlements.  

He leads a team of professionals on spatial planning and land use management aspects, and particularly to monitor and support three metropolitan municipalities, two district municipalities, and six local municipalities in Gauteng. His achievements include the development of a policy document titled, Gauteng City Region Implementation Plan for SPLUMA, which was approved by the Provincial Cabinet Executive Council and endorsed by the Premier’s Coordinating Forum. At a previous place of employment, the uMshwathi Local Municipality, he was the author of one of the best Integrated Development Plans (IDPs), which received an award in KwaZulu-Natal.

Proudly UFS

Hay believes he was equipped with a set of values and skills to deliver services and to make a difference wherever he is. Not only through the resources and means available to him, but also with a high level of dedication to the general good of others – whether it is ordinary citizens or people who just need the very basics to uplift their livelihoods. “These basics should be forthcoming from the people’s government, which in turn implicates me among many other government employees,” he believes.

Hay says in the UFS Department of Urban and Regional Planning – from the administration team through to the lecturers and senior academics – everyone plays a role to instil a wealth of knowledge and expertise in students to understand and resolve societal problems. “It is the manner in which the course is conducted, the administrative facilitation, the steadfast pace of learning, as well as the personal attention to students, that have equipped us to later formulate solutions for everyday life challenges.”

He is convinced that these are the fundamental principles that graduates need to achieve academic excellence and make themselves employable in a competitive world.

Words that stick with Hay from his master’s classes, are those of the former Head of the Department, Prof Das Steyn, “Gain experience, build your capacity, and do something positive with the education you receive. Education is not what we teach you, it is what you do with it. Everyone gets the same degree, but some will fail with it and some will do something positive with it and make a difference”. 

Standing out

And UFS graduates distinguish themselves in the workplace.

“In my work environment, the UFS graduates I know and have worked with are dedicated, goal-orientated, and passionate about the discipline. We go the ‘extra mile’ irrespective and have been able to apply the knowledge we gained from university towards problem-solving and contributing to make society a better place for all,” says Hay.

He also believes that the university has strong leadership and dedicated staff who actively respects the country’s rich diversity, acknowledging that we are an all-inclusive society, and creating a learning atmosphere that is transformed towards democratic principles.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept