Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 January 2021 | Story Leonie Bolleurs | Photo Supplied
Hay’s family celebrated his graduation ceremony with him in 2013. Pictured here are Frank Hay (father), Hay, his brother, Shanley and his mother, Vasi Hay.

Diversity, inclusivity, and transformation are what sets the University of the Free State (UFS) apart from other institutions of tertiary education. It instils in graduates the values of attention to detail and precision, being meticulous, adherence to deadlines, being honest, ethical, and taking the ‘moral high ground’. 

Graduates at the UFS are also introduced to high levels of dedication and commitment, irrespective of the task at hand; taking pride in producing work of high quality; having a non-discriminatory mindset; the ability to be team players or leaders (depending on what needs to be done); and demonstrating an understanding and consideration for society at large. 

This is the view of Ashley Hay, a successful UFS alumnus who completed his honours (accepted through the Recognition of Prior Learning process) and master’s degrees (graduating cum laude) in the Department of Urban and Regional Planning. Throughout his academic career, Hay has achieved good results and accolades such as Best Master’s Student, Best Master’s Dissertation, Best Research in Advanced Planning Practice, and also receiving membership of the Golden Key International Honour Society.

Today, he is employed by the Gauteng Provincial Government as Director: Land Use Management and Statutory Boards in the Office of the Premier and is in transition to a new branch called ‘Urban Planning’ under the Minister for Cooperative Governance, Urban Planning and Human Settlements.  

He leads a team of professionals on spatial planning and land use management aspects, and particularly to monitor and support three metropolitan municipalities, two district municipalities, and six local municipalities in Gauteng. His achievements include the development of a policy document titled, Gauteng City Region Implementation Plan for SPLUMA, which was approved by the Provincial Cabinet Executive Council and endorsed by the Premier’s Coordinating Forum. At a previous place of employment, the uMshwathi Local Municipality, he was the author of one of the best Integrated Development Plans (IDPs), which received an award in KwaZulu-Natal.

Proudly UFS

Hay believes he was equipped with a set of values and skills to deliver services and to make a difference wherever he is. Not only through the resources and means available to him, but also with a high level of dedication to the general good of others – whether it is ordinary citizens or people who just need the very basics to uplift their livelihoods. “These basics should be forthcoming from the people’s government, which in turn implicates me among many other government employees,” he believes.

Hay says in the UFS Department of Urban and Regional Planning – from the administration team through to the lecturers and senior academics – everyone plays a role to instil a wealth of knowledge and expertise in students to understand and resolve societal problems. “It is the manner in which the course is conducted, the administrative facilitation, the steadfast pace of learning, as well as the personal attention to students, that have equipped us to later formulate solutions for everyday life challenges.”

He is convinced that these are the fundamental principles that graduates need to achieve academic excellence and make themselves employable in a competitive world.

Words that stick with Hay from his master’s classes, are those of the former Head of the Department, Prof Das Steyn, “Gain experience, build your capacity, and do something positive with the education you receive. Education is not what we teach you, it is what you do with it. Everyone gets the same degree, but some will fail with it and some will do something positive with it and make a difference”. 

Standing out

And UFS graduates distinguish themselves in the workplace.

“In my work environment, the UFS graduates I know and have worked with are dedicated, goal-orientated, and passionate about the discipline. We go the ‘extra mile’ irrespective and have been able to apply the knowledge we gained from university towards problem-solving and contributing to make society a better place for all,” says Hay.

He also believes that the university has strong leadership and dedicated staff who actively respects the country’s rich diversity, acknowledging that we are an all-inclusive society, and creating a learning atmosphere that is transformed towards democratic principles.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept