Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 January 2021 | Story Leonie Bolleurs | Photo Supplied
Hay’s family celebrated his graduation ceremony with him in 2013. Pictured here are Frank Hay (father), Hay, his brother, Shanley and his mother, Vasi Hay.

Diversity, inclusivity, and transformation are what sets the University of the Free State (UFS) apart from other institutions of tertiary education. It instils in graduates the values of attention to detail and precision, being meticulous, adherence to deadlines, being honest, ethical, and taking the ‘moral high ground’. 

Graduates at the UFS are also introduced to high levels of dedication and commitment, irrespective of the task at hand; taking pride in producing work of high quality; having a non-discriminatory mindset; the ability to be team players or leaders (depending on what needs to be done); and demonstrating an understanding and consideration for society at large. 

This is the view of Ashley Hay, a successful UFS alumnus who completed his honours (accepted through the Recognition of Prior Learning process) and master’s degrees (graduating cum laude) in the Department of Urban and Regional Planning. Throughout his academic career, Hay has achieved good results and accolades such as Best Master’s Student, Best Master’s Dissertation, Best Research in Advanced Planning Practice, and also receiving membership of the Golden Key International Honour Society.

Today, he is employed by the Gauteng Provincial Government as Director: Land Use Management and Statutory Boards in the Office of the Premier and is in transition to a new branch called ‘Urban Planning’ under the Minister for Cooperative Governance, Urban Planning and Human Settlements.  

He leads a team of professionals on spatial planning and land use management aspects, and particularly to monitor and support three metropolitan municipalities, two district municipalities, and six local municipalities in Gauteng. His achievements include the development of a policy document titled, Gauteng City Region Implementation Plan for SPLUMA, which was approved by the Provincial Cabinet Executive Council and endorsed by the Premier’s Coordinating Forum. At a previous place of employment, the uMshwathi Local Municipality, he was the author of one of the best Integrated Development Plans (IDPs), which received an award in KwaZulu-Natal.

Proudly UFS

Hay believes he was equipped with a set of values and skills to deliver services and to make a difference wherever he is. Not only through the resources and means available to him, but also with a high level of dedication to the general good of others – whether it is ordinary citizens or people who just need the very basics to uplift their livelihoods. “These basics should be forthcoming from the people’s government, which in turn implicates me among many other government employees,” he believes.

Hay says in the UFS Department of Urban and Regional Planning – from the administration team through to the lecturers and senior academics – everyone plays a role to instil a wealth of knowledge and expertise in students to understand and resolve societal problems. “It is the manner in which the course is conducted, the administrative facilitation, the steadfast pace of learning, as well as the personal attention to students, that have equipped us to later formulate solutions for everyday life challenges.”

He is convinced that these are the fundamental principles that graduates need to achieve academic excellence and make themselves employable in a competitive world.

Words that stick with Hay from his master’s classes, are those of the former Head of the Department, Prof Das Steyn, “Gain experience, build your capacity, and do something positive with the education you receive. Education is not what we teach you, it is what you do with it. Everyone gets the same degree, but some will fail with it and some will do something positive with it and make a difference”. 

Standing out

And UFS graduates distinguish themselves in the workplace.

“In my work environment, the UFS graduates I know and have worked with are dedicated, goal-orientated, and passionate about the discipline. We go the ‘extra mile’ irrespective and have been able to apply the knowledge we gained from university towards problem-solving and contributing to make society a better place for all,” says Hay.

He also believes that the university has strong leadership and dedicated staff who actively respects the country’s rich diversity, acknowledging that we are an all-inclusive society, and creating a learning atmosphere that is transformed towards democratic principles.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept