Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Elsabe Brits | Photo SADC-GMI
Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS).

Nearly two-thirds of South Africa depends solely or partially on groundwater for domestic needs, and in a water-stressed country this source is becoming increasingly important. But we need to use it wisely.

Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS). He explains that all the natural water found in the earth’s subsurface is called groundwater. “When we look hard enough, we can find groundwater almost everywhere.  But that does not mean that we can start pumping groundwater at any location.  In many places, the amount of groundwater available (yield) is so little, or the water so deep that it is not financially viable to pump it.  Another problem might be the quality of the water.”

Numerous towns and communities depend solely on groundwater and many towns use a combined supply of surface and groundwater. When the town or settlement is far from any surface water and groundwater is available, boreholes are drilled. Depending on the size of the settlement, the boreholes are equipped with electrical or hand pumps.

Most of the big cities use surface water in their water pipes. Almost all big cities worldwide are located close to a supply of freshwater.  Cape Town has drilled many boreholes in the past two years to augment the city’s water supply.  However, problems can arise when a borehole is drilled for a community with a certain number of people, and soon there are more people than the borehole can supply for. It is not so much a case of the ‘borehole drying up’ but that the capacity has been exceeded.

Misconceptions about groundwater

With increasing drought and water restrictions being imposed, many people opted for their own borehole. When so many people draw water from the same source, the water table will drop. It can be compared to drinking a milkshake, but when five other people also drink with straws from the same milkshake, all will be left thirsty. 

Dr Lukas says because groundwater is something that cannot be seen with the naked eye, the general public has many misconceptions about groundwater. Some people think that you can drill a hole just anywhere and that you will find water, while others believe that water flows in underground rivers. It generally moves very slowly, only a few metres per year. And if it rains in a specific place, it does not mean that water will reach a particular borehole.

“Sustainable groundwater usage is the certainty that enough groundwater is available in years to come.  Sustainability is dependent on two external factors, namely demand and supply.  Unfortunately, both these factors are beyond the control of the geohydrologist.  When enough water is available for a community, the chances are that the community starts to grow, thereby enlarging the demand.  If the higher demand cannot be met, sustainability is no longer possible. When a change in rainfall pattern results in a decline of the precipitation, the groundwater recharge will become less, resulting in a lower supply of water.”


How does water move?

Groundwater moves through openings in the subsurface. These openings can be large (a millimetre to a few centimetres), but most of the time they are small, only a fraction of a millimetre. These are called pore spaces.  Water can only move through the pores if the pores are connected to other pores. The ease with which water can move through the rock is called hydraulic conductivity and is expressed in volume per area per time.  

Dr Lukas explains that different types of rock have different sizes of pore openings. The speed at which water can move through unconsolidated materials ranges from 1 000 m/d (gravel) to 10-8 m/d (clay). Consolidated materials range from 1 000 m/d (highly fractured rock) to 10-7 m/d (shale).  Sandstone, a rock that occurs in abundance in South Africa, has a typical hydraulic conductivity of 10-2 m/d, meaning that the speed at which the water flows is around 1 cm/d, which is less than 4 metres per year.  

In a way, you can compare groundwater flow to a pipe filled with marbles.  If you remove one marble at the one side, a marble may enter the pipe on the other side.  Although it may take the marble a long time to reach the other side of the pipe, the movement of the marbles is noticed almost immediately, says Dr Lukas.

Before groundwater is used, experts must make sure that it is suitable, Dr Lukas says. This is one of the areas that the Institute of Groundwater Studies at the UFS excels in. The institute also provides a complete service to industries through field investigations, the development of specialised field equipment, a well-equipped commercial and water research laboratory, and a number of computer models for the management of the aquifers, protecting them from pollution.

There are different standards for different purposes.  The best-known standard is the drinking 
water standard (SANS 241).  The water is tested for microbiology, as well as for the physical, aesthetic, operational and chemical determinants, and for the taste and colour.

There are several geophysical methods to locate groundwater.  “It must be stressed that the geophysical methods do not actually indicate places with water, but rather places where the geology and geological features support the presence of groundwater,” he says.

Different techniques are used to ‘look’ at different depths.   Water found close to the surface (upper 20 m) is often young water, meaning that it has been recharged not too long ago.  Because it is so close to the surface, it is vulnerable to contamination.   Deeper water is probably a bit older and because it is farther below the surface, it is more protected against surface contamination and the quality of this water is generally good.  Really deep groundwater (> 200 metres deep) will be even older and may have elevated salt content due to the long residence time of the water.

How much groundwater do we have?

Groundwater is a significant source of water, and in some parts of the country the only source of potable water.  According to the Department of Water Affairs and Sanitation, the most recent estimate of sustainable potential yield of groundwater resources at high assurance is 7 500 million m³/a, while current groundwater use is estimated at around 2 000 million m³/a. Allowing for an underestimation on groundwater use, about 3 500 million m³/a could be available for further development.  Unfortunately, if there is a shortage of water on one side of the country, it cannot be supplemented with water from the other side.
 
With a drought, the amount of water falling from the sky is below average, which means that the available water to recharge is also less. With less recharge water, the groundwater levels will decline.  To make things worse during a drought, groundwater users will pump more water to make up the deficit in rainfall, thereby accelerating the drop in water levels.

“Groundwater can be used to help humanity. The pore space in aquifers can be used to store water during a wet period, to be used later during a drought. This is called water banking, where water is injected into the aquifers (artificial recharge) during a period when there is enough water and pumped from the same aquifer during a period of water shortage,” says Dr Lukas. 

News Archive

UFS celebrates Africa Month
2017-05-24

 Description: ' Africa Month Tags: UFS celebrates Africa Month

Most of the international students at the UFS come from
the Southern African Development Community (SADC)
and other countries in Africa.

Photo: iStock

“Africa Month provides an opportunity
to every student and staff member to
commemorate African unity and celebrate
our rich cultural heritage, diversity,
energy and social dynamism.”

The University of the Free State (UFS) celebrates Africa Month to commemorate African unity and praise cultural heritage, as well as to take ownership of the future of the continent. According to Prof Heidi Hudson, Director of the Centre for Africa Studies, these are reasons to take part in the festivities.

Formation of Organisation of African Unity

Africa Day is the day on which Africa observes the creation of the Organisation of African Unity (OAU) on 25 May 1963. A total of 32 independent African states attended the formation.

The OAU’s aims were to promote unity and solidarity of the African states and act as a collective voice for the continent, in order to secure Africa’s long-term economic and political future and to rid it of remaining forms of colonialism. The OAU later gave birth to the African Union, which formally replaced the OAU in July 2002.

Prof Hudson says celebrating Africa Month forms part of her centre’s institutional mandate to promote an African focus in research, teaching, as well as public debate.

“Africa Month provides an opportunity to every student and staff member to commemorate African unity and celebrate our rich cultural heritage, diversity, energy and social dynamism. Secondly, by participating we all begin to take ownership of our future on this continent.”

She adds that Africa month provides a platform for reflecting on past experiences and achievements, as well as to critically assess the failures, challenges and the lessons learnt for the sake of a better future for the continent’s people.

Working relations across the continent

The UFS has working relations with universities, embassies and consulates in African countries such as Zimbabwe, Mozambique, Botswana, Zambia, Kenya, Namibia, Nigeria, Ghana, Uganda, and Tunisia.

Five cooperation agreements exist – they are with the Botho University (Botswana), Greater Zimbabwe University, Universidad Eduardo Mondlane (Mozambique), Trinity Theological Seminary Ghana, and Namibia Evangelical Theological Seminary.

According to Kanego Mokgosi, Senior Officer at Internationalisation, there are also working relations between the university and The Council for the Development of Social Science Research in Africa, Swedish International Development Agency and The United Nations Educational, Scientific and Cultural Organization. All of these focus on research development in Africa.

Most of the international students at the UFS come from the Southern African Development Community (SADC) and the continent. It hosts 1393 students from SADC countries.

“The UFS employs SADC protocol guidelines which, among others, enjoin SADC universities to admit at least 5% of their student population from the SADC region,” says Mokgosi.

Memorial Lecture by Dr Zeleza

On 24 May 2017 the Centre for Africa Studies hosted an Africa Day Memorial Lecture by Dr Paul Tiyambe Zeleza, the Vice Chancellor (President) of the United States International University Africa, Nairobi, Kenya.

The UFS library, in collaboration with the Department of English and the Office of International Affairs, also celebrated Africa Day on 25 May 2017. They hosted a conversation on the Land Debate in South Africa, together with the launch of a book titled White Narratives: The depiction of Post-2000 Land Invasions in Zimbabwe by Prof Irikidzayi Manase. He is an Associate Professor in the Department of English.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept