Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Elsabe Brits | Photo SADC-GMI
Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS).

Nearly two-thirds of South Africa depends solely or partially on groundwater for domestic needs, and in a water-stressed country this source is becoming increasingly important. But we need to use it wisely.

Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS). He explains that all the natural water found in the earth’s subsurface is called groundwater. “When we look hard enough, we can find groundwater almost everywhere.  But that does not mean that we can start pumping groundwater at any location.  In many places, the amount of groundwater available (yield) is so little, or the water so deep that it is not financially viable to pump it.  Another problem might be the quality of the water.”

Numerous towns and communities depend solely on groundwater and many towns use a combined supply of surface and groundwater. When the town or settlement is far from any surface water and groundwater is available, boreholes are drilled. Depending on the size of the settlement, the boreholes are equipped with electrical or hand pumps.

Most of the big cities use surface water in their water pipes. Almost all big cities worldwide are located close to a supply of freshwater.  Cape Town has drilled many boreholes in the past two years to augment the city’s water supply.  However, problems can arise when a borehole is drilled for a community with a certain number of people, and soon there are more people than the borehole can supply for. It is not so much a case of the ‘borehole drying up’ but that the capacity has been exceeded.

Misconceptions about groundwater

With increasing drought and water restrictions being imposed, many people opted for their own borehole. When so many people draw water from the same source, the water table will drop. It can be compared to drinking a milkshake, but when five other people also drink with straws from the same milkshake, all will be left thirsty. 

Dr Lukas says because groundwater is something that cannot be seen with the naked eye, the general public has many misconceptions about groundwater. Some people think that you can drill a hole just anywhere and that you will find water, while others believe that water flows in underground rivers. It generally moves very slowly, only a few metres per year. And if it rains in a specific place, it does not mean that water will reach a particular borehole.

“Sustainable groundwater usage is the certainty that enough groundwater is available in years to come.  Sustainability is dependent on two external factors, namely demand and supply.  Unfortunately, both these factors are beyond the control of the geohydrologist.  When enough water is available for a community, the chances are that the community starts to grow, thereby enlarging the demand.  If the higher demand cannot be met, sustainability is no longer possible. When a change in rainfall pattern results in a decline of the precipitation, the groundwater recharge will become less, resulting in a lower supply of water.”


How does water move?

Groundwater moves through openings in the subsurface. These openings can be large (a millimetre to a few centimetres), but most of the time they are small, only a fraction of a millimetre. These are called pore spaces.  Water can only move through the pores if the pores are connected to other pores. The ease with which water can move through the rock is called hydraulic conductivity and is expressed in volume per area per time.  

Dr Lukas explains that different types of rock have different sizes of pore openings. The speed at which water can move through unconsolidated materials ranges from 1 000 m/d (gravel) to 10-8 m/d (clay). Consolidated materials range from 1 000 m/d (highly fractured rock) to 10-7 m/d (shale).  Sandstone, a rock that occurs in abundance in South Africa, has a typical hydraulic conductivity of 10-2 m/d, meaning that the speed at which the water flows is around 1 cm/d, which is less than 4 metres per year.  

In a way, you can compare groundwater flow to a pipe filled with marbles.  If you remove one marble at the one side, a marble may enter the pipe on the other side.  Although it may take the marble a long time to reach the other side of the pipe, the movement of the marbles is noticed almost immediately, says Dr Lukas.

Before groundwater is used, experts must make sure that it is suitable, Dr Lukas says. This is one of the areas that the Institute of Groundwater Studies at the UFS excels in. The institute also provides a complete service to industries through field investigations, the development of specialised field equipment, a well-equipped commercial and water research laboratory, and a number of computer models for the management of the aquifers, protecting them from pollution.

There are different standards for different purposes.  The best-known standard is the drinking 
water standard (SANS 241).  The water is tested for microbiology, as well as for the physical, aesthetic, operational and chemical determinants, and for the taste and colour.

There are several geophysical methods to locate groundwater.  “It must be stressed that the geophysical methods do not actually indicate places with water, but rather places where the geology and geological features support the presence of groundwater,” he says.

Different techniques are used to ‘look’ at different depths.   Water found close to the surface (upper 20 m) is often young water, meaning that it has been recharged not too long ago.  Because it is so close to the surface, it is vulnerable to contamination.   Deeper water is probably a bit older and because it is farther below the surface, it is more protected against surface contamination and the quality of this water is generally good.  Really deep groundwater (> 200 metres deep) will be even older and may have elevated salt content due to the long residence time of the water.

How much groundwater do we have?

Groundwater is a significant source of water, and in some parts of the country the only source of potable water.  According to the Department of Water Affairs and Sanitation, the most recent estimate of sustainable potential yield of groundwater resources at high assurance is 7 500 million m³/a, while current groundwater use is estimated at around 2 000 million m³/a. Allowing for an underestimation on groundwater use, about 3 500 million m³/a could be available for further development.  Unfortunately, if there is a shortage of water on one side of the country, it cannot be supplemented with water from the other side.
 
With a drought, the amount of water falling from the sky is below average, which means that the available water to recharge is also less. With less recharge water, the groundwater levels will decline.  To make things worse during a drought, groundwater users will pump more water to make up the deficit in rainfall, thereby accelerating the drop in water levels.

“Groundwater can be used to help humanity. The pore space in aquifers can be used to store water during a wet period, to be used later during a drought. This is called water banking, where water is injected into the aquifers (artificial recharge) during a period when there is enough water and pumped from the same aquifer during a period of water shortage,” says Dr Lukas. 

News Archive

Dr Makutoane to present research on world stage in US
2017-06-14

“If the SBL has acknowledged you,
it means the research you are doing
is solid. There are people out there
who want to listen to my paper.”

To present a research paper at an international conference of about 10 000 people and where 100 sessions are taking place at the same time is what dreams are made of for an academic. This is no longer a dream for the humble Dr Tshokolo Makutoane who will share his knowledge at the annual meeting of the prestigious Society of Biblical Literature (SBL).

Dr Makutoane, a senior lecturer at the Department of Hebrew at the University of the Free State (UFS), will be a speaker at the conference in Boston, in the US, from 19-21 November 2017. This after receiving a remarkable travel grant from the SBL to present his paper, titled The Contribution of Linguistic Typology for the Study of Biblical Hebrew in Africa: The Case of Sesotho Pronouns.

Description: Dr Makutoane to present research on world stage in US Tags: Dr Makutoane to present research on world stage in US

Dr Makutoane, senior lecturer at the Department of
Hebrew at the University of the Free State, was
speechless when he heard he will be presenting a
paper at the annual meeting of the Society of Biblical
Literature in Boston in the US.
Photo: Jóhann Thormählen

Scholars from around the world participate
His paper is part of a thematic session on “Theoretical Approaches to Anaphora and Pronouns in Biblical Hebrew” in which scholars from Canada, the US, Australia, Europe and Israel will participate.

The research Dr Makutoane will be showcasing in Boston is about teaching Biblical Hebrew in Africa, and more specifically, pronouns, to Sesotho-speaking students.

“SBL is one of the largest organisations in the world and if you get the opportunity to present a paper there, it is one of the highest honours in our context you can have,” Dr Makutoane said.

“If the SBL has acknowledged you, it means the research you are doing is solid. There are people out there who want to listen to my paper.”

According to the SBL website (https://www.sbl-site.org) more than 1 200 academic sessions and workshops will take place at the conference, co-hosted by the SBL and the American Academy of Religion.

Highlight of researcher’s entire career
Receiving the grant and attending the conference for the first time is the highlight of Dr Makutoane’s career. “I feel very grateful, honoured and humbled. I was speechless when I heard about it. I couldn’t help myself and actually cried,” he said.

The grant, given to only four SBL members – the other three are from Samoa, Nigeria and India – is intended to support under-represented and under-resourced scholars who demonstrate a financial need.

Dr Makutoane thanked his mentors, Prof Jacobus Naudé and Prof Cynthia Miller-Naudé, who assisted him with the application. Naudé is a senior professor at the Department of Hebrew and Miller-Naudé a senior professor and head of the department.

Dr Makutoane, who studied Theology at the UFS and is a minister at the NGKA Rehauhetswe church near Bloemfontein, is also grateful to his church that gave him the opportunity to study at the UFS and be able to work at the university.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept