Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Elsabe Brits | Photo SADC-GMI
Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS).

Nearly two-thirds of South Africa depends solely or partially on groundwater for domestic needs, and in a water-stressed country this source is becoming increasingly important. But we need to use it wisely.

Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS). He explains that all the natural water found in the earth’s subsurface is called groundwater. “When we look hard enough, we can find groundwater almost everywhere.  But that does not mean that we can start pumping groundwater at any location.  In many places, the amount of groundwater available (yield) is so little, or the water so deep that it is not financially viable to pump it.  Another problem might be the quality of the water.”

Numerous towns and communities depend solely on groundwater and many towns use a combined supply of surface and groundwater. When the town or settlement is far from any surface water and groundwater is available, boreholes are drilled. Depending on the size of the settlement, the boreholes are equipped with electrical or hand pumps.

Most of the big cities use surface water in their water pipes. Almost all big cities worldwide are located close to a supply of freshwater.  Cape Town has drilled many boreholes in the past two years to augment the city’s water supply.  However, problems can arise when a borehole is drilled for a community with a certain number of people, and soon there are more people than the borehole can supply for. It is not so much a case of the ‘borehole drying up’ but that the capacity has been exceeded.

Misconceptions about groundwater

With increasing drought and water restrictions being imposed, many people opted for their own borehole. When so many people draw water from the same source, the water table will drop. It can be compared to drinking a milkshake, but when five other people also drink with straws from the same milkshake, all will be left thirsty. 

Dr Lukas says because groundwater is something that cannot be seen with the naked eye, the general public has many misconceptions about groundwater. Some people think that you can drill a hole just anywhere and that you will find water, while others believe that water flows in underground rivers. It generally moves very slowly, only a few metres per year. And if it rains in a specific place, it does not mean that water will reach a particular borehole.

“Sustainable groundwater usage is the certainty that enough groundwater is available in years to come.  Sustainability is dependent on two external factors, namely demand and supply.  Unfortunately, both these factors are beyond the control of the geohydrologist.  When enough water is available for a community, the chances are that the community starts to grow, thereby enlarging the demand.  If the higher demand cannot be met, sustainability is no longer possible. When a change in rainfall pattern results in a decline of the precipitation, the groundwater recharge will become less, resulting in a lower supply of water.”


How does water move?

Groundwater moves through openings in the subsurface. These openings can be large (a millimetre to a few centimetres), but most of the time they are small, only a fraction of a millimetre. These are called pore spaces.  Water can only move through the pores if the pores are connected to other pores. The ease with which water can move through the rock is called hydraulic conductivity and is expressed in volume per area per time.  

Dr Lukas explains that different types of rock have different sizes of pore openings. The speed at which water can move through unconsolidated materials ranges from 1 000 m/d (gravel) to 10-8 m/d (clay). Consolidated materials range from 1 000 m/d (highly fractured rock) to 10-7 m/d (shale).  Sandstone, a rock that occurs in abundance in South Africa, has a typical hydraulic conductivity of 10-2 m/d, meaning that the speed at which the water flows is around 1 cm/d, which is less than 4 metres per year.  

In a way, you can compare groundwater flow to a pipe filled with marbles.  If you remove one marble at the one side, a marble may enter the pipe on the other side.  Although it may take the marble a long time to reach the other side of the pipe, the movement of the marbles is noticed almost immediately, says Dr Lukas.

Before groundwater is used, experts must make sure that it is suitable, Dr Lukas says. This is one of the areas that the Institute of Groundwater Studies at the UFS excels in. The institute also provides a complete service to industries through field investigations, the development of specialised field equipment, a well-equipped commercial and water research laboratory, and a number of computer models for the management of the aquifers, protecting them from pollution.

There are different standards for different purposes.  The best-known standard is the drinking 
water standard (SANS 241).  The water is tested for microbiology, as well as for the physical, aesthetic, operational and chemical determinants, and for the taste and colour.

There are several geophysical methods to locate groundwater.  “It must be stressed that the geophysical methods do not actually indicate places with water, but rather places where the geology and geological features support the presence of groundwater,” he says.

Different techniques are used to ‘look’ at different depths.   Water found close to the surface (upper 20 m) is often young water, meaning that it has been recharged not too long ago.  Because it is so close to the surface, it is vulnerable to contamination.   Deeper water is probably a bit older and because it is farther below the surface, it is more protected against surface contamination and the quality of this water is generally good.  Really deep groundwater (> 200 metres deep) will be even older and may have elevated salt content due to the long residence time of the water.

How much groundwater do we have?

Groundwater is a significant source of water, and in some parts of the country the only source of potable water.  According to the Department of Water Affairs and Sanitation, the most recent estimate of sustainable potential yield of groundwater resources at high assurance is 7 500 million m³/a, while current groundwater use is estimated at around 2 000 million m³/a. Allowing for an underestimation on groundwater use, about 3 500 million m³/a could be available for further development.  Unfortunately, if there is a shortage of water on one side of the country, it cannot be supplemented with water from the other side.
 
With a drought, the amount of water falling from the sky is below average, which means that the available water to recharge is also less. With less recharge water, the groundwater levels will decline.  To make things worse during a drought, groundwater users will pump more water to make up the deficit in rainfall, thereby accelerating the drop in water levels.

“Groundwater can be used to help humanity. The pore space in aquifers can be used to store water during a wet period, to be used later during a drought. This is called water banking, where water is injected into the aquifers (artificial recharge) during a period when there is enough water and pumped from the same aquifer during a period of water shortage,” says Dr Lukas. 

News Archive

Higher than expected prevalence of dementia in South African urban black population
2010-09-22

 Prof. Malan Heyns and Mr Rikus van der Poel

Pilot research done by University of the Free State (UFS) indicates that the prevalence of dementia, of which Alzheimer’s disease is only one of the causes, is considerably higher than initially estimated. Clinical tests are now underway to confirm these preliminary findings.

To date it has been incorrectly assumed that dementia is less prevalent among urban black communities. This assumption is strongly disputed by the findings of the current study, which indicates a preliminary prevalence rate of approximately 6% for adults aged 65 years and older in this population group. Previous estimates for Southern Africa have been set at around 2,1%.

The research by the Unit for Professional Training and Services in the Behavioural Sciences (UNIBS) at the UFS and Alzheimer’s South Africa is part of the International 10/66 Dementia Research Group’s (10/66 DRG) initiative to establish the prevalence of dementia worldwide.

Mr Rikus van der Poel, coordinator of the local study, and Prof. Malan Heyns, Principal Investigator, say worldwide 66% of people with dementia live in low and middle income countries. It is expected that it will rise to more than 70% by 2040, and the socio-economic impact of dementia will increase accordingly within this period. 21 September marks World Alzheimer’s Day, and this year the focus is on the global economic impact of dementia. Currently, the world wide cost of dementia exceeds 1% of the total global GDP. If the global cost associated with dementia care was a company, it would be larger than Exxon-Mobil or Wal-Mart.

The researchers also say that of great concern is the fact that South Africa’s public healthcare system is essentially geared toward addressing primary healthcare needs, such as HIV/Aids and tuberculosis. The adult prevalence rate of HIV was 18,1% in 2007. According to UNAIDS figures more than 5,7 million people in South Africa are living with HIV/Aids, with an estimated annual mortality of 300 000. In many instances the deceased are young parents, with the result that the burden of childcare falls back on the elderly, and in many cases elderly grandparents suffering from dementia are left without children to take care of them. “These are but a few reasons that highlight the need for advocacy and awareness regarding dementia and care giving in a growing and increasingly urbanized population,” they say.

Low and middle income countries often lack epidemiological data to provide representative estimates of the regional prevalence of dementia. In general, epidemiological studies are challenging and expensive, especially in multi-cultural environments where the application of research protocols relies heavily on accurate language translations and successfully negotiated community access. Despite these challenges, the local researchers are keen to support advocacy and have joined the international effort to establish the prevalence of dementia through the 10/66 DRG.

The 10/66 DRG is a collective of researchers carrying out population-based research into dementia, non-communicable diseases and ageing in low and middle income countries. 10/66 refers to the two-thirds (66%) of people with dementia living in low and middle income countries, and the 10% or less of population-based research that has been carried out in those regions.

Since its inception in 1998, the 10/66 DRG has conducted population based surveys in 14 catchment areas in ten low and middle income countries, with a specific focus on the prevalence and impact of dementia. South Africa is one of seven LAMICs (low and medium income countries) where new studies have been conducted recently, the others being Puerto Rico, Peru, Mexico, Argentina, China and India.

Mr Van der Poel says participating researchers endeavour to conduct cross-sectional, comprehensive, one-phase surveys of all residents aged 65 and older within a geographically defined area. All centres share the same core minimum dataset with cross-culturally validated assessments (dementia diagnosis and subtypes, mental disorders, physical health, anthropometry, demographics, extensive non-communicable risk factor questionnaires, disability/functioning, health service utilization and caregiver strain).

The local pilot study, funded by Alzheimer’s South Africa, was rolled out through an existing community partnership, the Mangaung University of the Free State Community Partnership Programme (MUCPP).

According to Mr Van der Poel and Prof. Heyns, valuable insights have been gained into the myriad factors at play in establishing an epidemiological research project. The local community has responded positively and the pilot phase in and of itself has managed to promote awareness of the condition. The study has also managed to identify traditional and culture-specific views of dementia and dementia care. In addition, existing community-based networks are being strengthened, since part of the protocol will include the training and development of family caregivers within the local community in Mangaung.

“Like most developing economies, the South African population will experience continued urbanization during the next two decades, along with increased life expectancy. Community-based and residential care facilities for dementia are few and far between and government spending will in all probability continue to address the high demands associated with primary healthcare needs. These are only some of the reasons why epidemiological and related research is an important tool for assisting lobbyists, advocates and policymakers in promoting better care for those affected by dementia.”

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
21 September 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept