Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Elsabe Brits | Photo SADC-GMI
Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS).

Nearly two-thirds of South Africa depends solely or partially on groundwater for domestic needs, and in a water-stressed country this source is becoming increasingly important. But we need to use it wisely.

Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS). He explains that all the natural water found in the earth’s subsurface is called groundwater. “When we look hard enough, we can find groundwater almost everywhere.  But that does not mean that we can start pumping groundwater at any location.  In many places, the amount of groundwater available (yield) is so little, or the water so deep that it is not financially viable to pump it.  Another problem might be the quality of the water.”

Numerous towns and communities depend solely on groundwater and many towns use a combined supply of surface and groundwater. When the town or settlement is far from any surface water and groundwater is available, boreholes are drilled. Depending on the size of the settlement, the boreholes are equipped with electrical or hand pumps.

Most of the big cities use surface water in their water pipes. Almost all big cities worldwide are located close to a supply of freshwater.  Cape Town has drilled many boreholes in the past two years to augment the city’s water supply.  However, problems can arise when a borehole is drilled for a community with a certain number of people, and soon there are more people than the borehole can supply for. It is not so much a case of the ‘borehole drying up’ but that the capacity has been exceeded.

Misconceptions about groundwater

With increasing drought and water restrictions being imposed, many people opted for their own borehole. When so many people draw water from the same source, the water table will drop. It can be compared to drinking a milkshake, but when five other people also drink with straws from the same milkshake, all will be left thirsty. 

Dr Lukas says because groundwater is something that cannot be seen with the naked eye, the general public has many misconceptions about groundwater. Some people think that you can drill a hole just anywhere and that you will find water, while others believe that water flows in underground rivers. It generally moves very slowly, only a few metres per year. And if it rains in a specific place, it does not mean that water will reach a particular borehole.

“Sustainable groundwater usage is the certainty that enough groundwater is available in years to come.  Sustainability is dependent on two external factors, namely demand and supply.  Unfortunately, both these factors are beyond the control of the geohydrologist.  When enough water is available for a community, the chances are that the community starts to grow, thereby enlarging the demand.  If the higher demand cannot be met, sustainability is no longer possible. When a change in rainfall pattern results in a decline of the precipitation, the groundwater recharge will become less, resulting in a lower supply of water.”


How does water move?

Groundwater moves through openings in the subsurface. These openings can be large (a millimetre to a few centimetres), but most of the time they are small, only a fraction of a millimetre. These are called pore spaces.  Water can only move through the pores if the pores are connected to other pores. The ease with which water can move through the rock is called hydraulic conductivity and is expressed in volume per area per time.  

Dr Lukas explains that different types of rock have different sizes of pore openings. The speed at which water can move through unconsolidated materials ranges from 1 000 m/d (gravel) to 10-8 m/d (clay). Consolidated materials range from 1 000 m/d (highly fractured rock) to 10-7 m/d (shale).  Sandstone, a rock that occurs in abundance in South Africa, has a typical hydraulic conductivity of 10-2 m/d, meaning that the speed at which the water flows is around 1 cm/d, which is less than 4 metres per year.  

In a way, you can compare groundwater flow to a pipe filled with marbles.  If you remove one marble at the one side, a marble may enter the pipe on the other side.  Although it may take the marble a long time to reach the other side of the pipe, the movement of the marbles is noticed almost immediately, says Dr Lukas.

Before groundwater is used, experts must make sure that it is suitable, Dr Lukas says. This is one of the areas that the Institute of Groundwater Studies at the UFS excels in. The institute also provides a complete service to industries through field investigations, the development of specialised field equipment, a well-equipped commercial and water research laboratory, and a number of computer models for the management of the aquifers, protecting them from pollution.

There are different standards for different purposes.  The best-known standard is the drinking 
water standard (SANS 241).  The water is tested for microbiology, as well as for the physical, aesthetic, operational and chemical determinants, and for the taste and colour.

There are several geophysical methods to locate groundwater.  “It must be stressed that the geophysical methods do not actually indicate places with water, but rather places where the geology and geological features support the presence of groundwater,” he says.

Different techniques are used to ‘look’ at different depths.   Water found close to the surface (upper 20 m) is often young water, meaning that it has been recharged not too long ago.  Because it is so close to the surface, it is vulnerable to contamination.   Deeper water is probably a bit older and because it is farther below the surface, it is more protected against surface contamination and the quality of this water is generally good.  Really deep groundwater (> 200 metres deep) will be even older and may have elevated salt content due to the long residence time of the water.

How much groundwater do we have?

Groundwater is a significant source of water, and in some parts of the country the only source of potable water.  According to the Department of Water Affairs and Sanitation, the most recent estimate of sustainable potential yield of groundwater resources at high assurance is 7 500 million m³/a, while current groundwater use is estimated at around 2 000 million m³/a. Allowing for an underestimation on groundwater use, about 3 500 million m³/a could be available for further development.  Unfortunately, if there is a shortage of water on one side of the country, it cannot be supplemented with water from the other side.
 
With a drought, the amount of water falling from the sky is below average, which means that the available water to recharge is also less. With less recharge water, the groundwater levels will decline.  To make things worse during a drought, groundwater users will pump more water to make up the deficit in rainfall, thereby accelerating the drop in water levels.

“Groundwater can be used to help humanity. The pore space in aquifers can be used to store water during a wet period, to be used later during a drought. This is called water banking, where water is injected into the aquifers (artificial recharge) during a period when there is enough water and pumped from the same aquifer during a period of water shortage,” says Dr Lukas. 

News Archive

SRC visits the US as part of Global Leadership Preparation Programme
2012-06-07

The Student Representative Councils (SRC) of the University of the Free State’s (UFS) Bloemfontein and Qwaqwa Campuses will be travelling to the United States from 10-24 June 2012 on an intensive leadership development programme.

The Global Leadership Preparation Programme, initiated by the Vice-Chancellor and Rector, Prof. Jonathan Jansen, has been designed to ensure that South Africa’s next generation of leaders understand their unique place in a global context, the interconnectedness of global and local society and various possibilities for change.
 
The group of 36 students will be visiting Washington DC, Boston and New York.
 
“As a university we recognise that students who lead on campus must be prepared to also lead the country, which requires amongst others greater understanding of the impact and influence of global developments (social, economic, political) on nation states and campuses. This includes knowledge to deepen democratic participation and real representation – issues we know that often are contested in important student governance structures such as SRCs,” says Mr Rudi Buys, Dean of Student Affairs.
 
The group will be studying among others the impact, influence and limits of the United Nations in global leadership; the impact of transnational companies on economic policies of African countries; the impact of American universities on African leadership; the impact of international philanthropy on African development and the impact of American public institutions on learning among the disadvantaged: lessons for South Africa.
 
The programme complements and strengthens other leadership preparation programmes of the UFS, such as the Leadership for Change Programme and the Gateway College Programme – an intensive orientation programme for all undergraduate students. It will give students a competitive advantage in leadership over more local programmes and initiatives that seldom look beyond the campus, or even beyond the country, in preparing the next generation of leadership.
 
“We value this initiative by the university leadership to give us the opportunity to explore and spread our wings and gather as much knowledge as we can get to raise the bar in terms of student governance and leadership. The university is amongst the few in the country that sees the need to strengthen and develop its student leadership by exposing it and allowing it to understand its role in a global context. This is a chance that we take seriously and we intend to use it to the betterment of the institution,” says Bongani Ngcanga, President of the Central SRC.
 
“While we welcomed the initiative taken by the university to design this programme, the SRC questioned and debated heavily on the merits and real contribution of such a programme. Only on approval of the academic and development profile of the programme did we accept its merits and now are excited about the value thereof. This opportunity goes beyond the term of the SRC and will develop and equip us for the great positions we will hold in the future. I am looking forward to meeting influential lobbyists, profound academics and strong politicians,” says Richard Chemaly, SRC President of the Bloemfontein Campus.
 
Upon their return, the SRCs will set a new benchmark for future councils, raising the bar to that of internationally acclaimed student leadership. One of the objectives of the programme is to produce written, reflective statements about the learning that resulted from the trip and to start dialogues in order to improve student governance and governance as a whole. Workshops will also be presented for aspirant student leaders on leadership lessons learnt from an international perspective.
 
Members of the SRCs are covering part in the cost of the programme and generous contributions have also been received from outside the university.

Media Release
07 June 2012
Issued by: Lacea Loader
Director: Strategic Communication
Tel: +27(0)51 401 2584
Cell: +27(0)83 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept